
CS 181:

Natural Language

Processing

Lecture 9: Context Free Grammars

K i m B r u c e

P o m o n a C o l l e g e

S p r i n g 2 0 0 8

Disclaimer: Slide contents borrowed from many sources on web!

1

Homework & NLTK

Review MLE, Laplace, and Good-Turing
in smoothing.py

2

Motivation

Chunks of sentences behave as units

Want to recover from input.

Reason: Chunks are basis of meaning

Subtrees of parse trees will represent
meaningful chunks for us.

3

Formal Def of CFG

G = <T, N, S, R>, where

T is a set of terminals (lexicon)

N is a set of non-terminals. In linguistics, often
also identify P ! N, preterminals, which always
rewrite as terminals.

S " N is start state.

R is set of rules of form X # !, where X is non-

terminal and ! is sequence composed of
terminals and non-terminals.

L(G) = {w " T* | S #* w }

4

Uses of CFG

Generate sentences of language

Recognize sentences of language

Impose structure as well!

Sentences in language said to be grammatical

5

Example CFG

T = {this, that, a, the, man, book, flight, meal, include, read, does}

N = {S, NP, NOM, VP, Det, Noun, Verb, Aux}

S - start

R =

S # NP VP VP # Verb

S # Aux NP VP VP # Verb NP

S # VP Det # that | this | a | the

NP # Det NOM Noun # book | flight | meal | man

NOM # Noun Verb # book | include | read

NOM # Noun NOM Aux # does

6

Derivation

S

! NP VP

! Det NOM VP

! The NOM VP

! The Noun VP

! The man VP

! The man Verb NP

! The man read NP

! The man read Det NOM

! The man read this NOM

! The man read this Noun

! The man read this book

7

Parse Tree

S

VerbNOMDet

VPNP

this

NOMDet

NP

book

read

man

NounThe

Many derivations give the same tree.
Abstracts away order!

8

CFG’s & Recursion

Non-trivial recursion represented nicely
with cfg’s:

NP # NP PP

PP # Prep NP

[S[NPThe student] [VP [VB took] [NP a class
[PP in [NP Edmunds]]] [PP with [NP her
friend]]]] bracket notation represents tree

Rule like VP # V NP allows to ignore

internal complexity of NP.

9

Polymorphism

S # S and S

John liked Mary and she liked him

NP # NP and NP

John like Mary and Suzy

VP # VP and VP

...

Need X # X and X

Any restrictions?

10

Unwanted Complexity

Agreement

He plays on the swings.

They play on the swings.

... this flight

... these flights

Other languages require gender

Subject vs. object (he vs. him)

11

Subcategorization

Verbs with objects and indirect objects

John sneezed.

Mary found [NP a phone].

Jane gave [NP the teacher] [NP an apple].

I prefer [TO_VP to do it myself]

I was told [S it is not allowed to litter].

Subcategorization expresses constraints on
a word on the number and type of
arguments associated with it.

12

Allows Incorrect

Sentences

VP # V NP

Allows “John sneezed the book.”

Distinguish between transitive & non-transitive

but many more distinctions!

Subcategorization frames

Can complicate the grammar or add other
mechanisms (non-cfg) to take care of these
issues.

Come back to it later!

13

Movement

[S [NP My travel agent][VP booked [NP the
flight]]]

[S [NP Which flight] do you want me to
have the travel agent [V book]]?

Separated object (the flight) from verb (book)

How can we recover constituents?

14

Equivalence of Grammars

Two grammars are:

strongly equivalent if

they generate the same sentences

they assign the same structure to each sentence

weakly equivalent if

they generate the same sentences

they may not assign the same structure to each
sentence

Alas, weakly equivalent is undecidable!

15

Normal Forms

Useful in performing algorithms on cfg’s

Greibach

Chomsky (CNF)

Productions of form: A # B C or A # a or S # "

Theorem: Any cfg can be converted into a
weakly equivalent grammar in CNF.

16

Conversion to CNF

Make S non-recursive (add S’ if necessary)

Only necessary if " is in language..

Eliminate all "-moves except for S

Eliminate unit productions (S # T).

Reduce right hand sides to length 2.

Convert all terminals on rt sides to non-
terminals

Remove any useless rules & symbols

17

MAKE S NON-RECURSIVE

Convert:

S # "

S # A B S

A # "

A # x y z

B # w B

B # v

Step 1:

S # "

S # S’

S’ # A B S’

S’ # "

A # "

A # x y z

B # w B

B # v

18

Eliminate "-moves

Step 2:

S # "

S # S’

S’ # A B S’

S’ # A B

S’ # B S’

S’ # B

A # x y z

B # w B

B # v

Step 1:

S # "

S # S’

S’ # A B S’

S’ # "

A # "

A # x y z

B # w B

B # v

19

Eliminate Unit

Productions

Step 2:

S # "

S # S’

S’ # A B S’

S’ # A B

S’ # B S’

S’ # B

A # x y z

B # w B

B # v

Step 3:

S # "

S # A B S’

S # A B

S # B S’

S # w B

S # v

S’ # A B S’

S’ # A B

S’ # B S’

S’ # w B

S’ # v

A # x y z

B # w B

B # v

20

Shrink RHS

Step 4:

S # "

S # A P

P # B S’

S # A B

S # B S’

S # w B

S # v

S’ # A P

S’ # A B

Step 3:
S # "

S # A B S’

S # A B

S # B S’

S # w B

S # v

S’ # A B S’

S’ # A B

S’ # B S’

S’ # w B

S’ # v

A # x y z

B # w B

B # v

S’ # B S’

S’ # w B

S’ # v

A # x Q

Q # y z

B # w B

B # v

21

Eliminate terminals

Step 5:

S # "

S # A P

P # B S’

S # A B

S # B S’

S # W B

S # v

S’ # A P

S’ # A B

S’ # B S’

S’ # W B

S’ # v

A # X Q

Q # Y Z

B # W B

B # v

W # w

X # x

Y # y

Z # z

Step 4:

S # "

S # A P

P # B S’

S # A B

S # B S’

S # w B

S # v

S’ # A P

S’ # A B

S’ # B S’

S’ # w B

S’ # v

A # x Q

Q # y z

B # w B

B # v

22

Parsing

Assign parse trees to legal sentence of the
language.

Regular languages (expressions) can be
recognized by FSA in linear time.

Can’t represent languages like an bn.

Cfg’s can’t represent an bn cn.

Requires context-sensitive.

23

Parsing CFG’s

Requires push-down automaton.

FSA w/ stack to hold partial results

Complexity

space to parse - O(n) (proportional to
recursion),

time O(n3)

24

Parsing

Recognizer just says yes or no

Parser: Given term, find parse tree

Bottom-up

Top-down

Want to find all parse trees! Ambiguity!

Want to determine which is most likely

Short-term memory in humans is limited

25

Empty Rules and Left

Recursion

Grammars can

have an "-rule: A # "

have left-recursive rules: A # AB

E.g. VP # VP PP

Make parsing more difficult!

26

Top-Down Parsing

Hypothesis-Driven Parsing

Goal-directed

Start with S and get to string, w.

Can use depth-first or breadth-first search

27

Top-Down Parsing

S # NP VP VP # Verb

S # Aux NP VP VP # Verb NP

S # VP Det # that | this | a | the

NP # Det NOM Noun # book | flight | meal | man

NOM # Noun Verb # book | include | read

NOM # Noun NOM Aux # does

Parse: Book that flight

28

S

S SS

NP VPNPAuxVP VP

S

NP VP

S

NP VP

S

VP

S

VP

NOMDet Verb NOMDet Verb NP Verb Verb NP

S

VP

Verb NP

book NOMDet
29

Probs w/Top-Down

Left recursive rules, e.g. NP # NP PP

lead to infinite recursion.

Inefficient if lots of rules w/ same LHS

Useless work: Expands trees that have no
evidence.

Do well if search directed by grammar.

Treat pre-terminals before start parse.

30

Bottom-Up Parsing

Data-driven: Start w/ string. Rewrite by
replacing RHS by LHS of rules until get S.

May have several RHS matches.

Usually presented as shift-reduce parse

31

NOM

Noun

NOM

Det

book that flight

Noun

NOM

Noun

NOM

Det

book that flight

Noun

NP

Verb

NOM

Det

book that flight

Noun Verb

NOM

Det

book that flight

Noun

NP

32

Shift-Reduce

sentence # NounPhrase VerbPhrase

NounPhrase # Art Noun

VerbPhrase # Verb | Adverb Verb

Art # the | a | ...

Verb # jumps | sings | ...

Noun # dog | cat | ...

Parse: The dog jumps

Stack Input Sequence

() (the dog jumps)

(the) (dog jumps) SHIFT word onto stack

(Art) (dog jumps) REDUCE using grammar rule

(Art dog) (jumps) SHIFT..

(Art Noun) (jumps) REDUCE..

(NounPhrase) (jumps) REDUCE

(NounPhrase jumps) () SHIFT

(NounPhrase Verb) () REDUCE

(NounPhrase VerbPhrase)() REDUCE

(Sentence) () SUCCESS

Draw trees as parse!

33

Bottom-Up Parsing

Do we shift or reduce?

If reduce, which rule do we use?

With prog. langs, build table to always tell
you what to do -- deterministic.

Programming languages designed to be
unambiguous. We don’t have that luxury!

"-rules can be applied anywhere!

May need to backtrack!

34

Top-Down vs. Bottom-Up

Top-down may explore paths that can
never result in desired string

In prog. langs, can make sure that doesn’t
happen.

Bottom up may build subtrees that can not
be part of trees rooted at S.

Both may have to repeat work when
backtracking!

35

Keys to Success

Watch out for bad grammars

left-recursive for top-down (VP # VP PP)

Try to avoid redoing work when
backtracking

Grammar transformations help

... but linguists will hate you!

36

Dynamic Programming

Next time:

CYK

Earley’s Algorithm

Chart parsing

Probabilistic versions

37

Any Questions?

38

