
CS 181:

Natural Language

Processing

Lecture 6: N!Grams & PoS Ta"ing

K i m B r u c e

P o m o n a C o l l e g e

S p r i n g 2 0 0 8

Disclaimer: Slide contents borrowed from many sources on web!

More Problems w/ N-grams

Sparsity of data

Even common words don’t occur very often

In a million words:

“kick” occurs about 10 times

“wrist” occurs about 5 times

Even common 3 word phrases are unlikely to appear!

How to cope with missing data?

It’s bad!

count 2-grams 3-grams

1 8,045,024 53,737,350

2 2,065,469 9,229,958

3 970,434 3,654,791

> 4 3,413,290 8,728,789

> 0 14,494,217 75,349,888

possible 6.8 x 1010 1.7 x 1016

Taken from data set w/ 261,741 words
365,000,000 words training!

Too Many Zeroes

6.8 x 1010 possible bigrams,
but only 3.65 x 108 words in training set.

Trigrams worse!

Can’t get data set large enough to get them
all -- even those that could occur.

Solution:

Redistribute probability to save some for
those that haven’t been encountered.

Getting Rid of Zeroes

Zeroes for P(w | uv) come in two ways:

uvw doesn’t exist in training data

Even vw doesn’t occur!!

Make counts non-zero - how?

Must reduce other probabilities so that

 !w’ is word P(w’| uv) = 1

LaPlace Smoothing

If add 1 to counts of each trigram, then
must add V = size of vocabulary so still
sums to 1.

All moved from zero.

Changes probability too much!

PLaPlace(w|uv) =
C(uvw) + 1

C(uv) + V

Surprising Results

Suppose have 20,000 word vocabulary and
“threw the” occurs 100 times and “threw the
ball” 50 times in 1,000,000 words training

P(ball | threw the) " 50/100 = .5

PLaPlace(ball | threw the) "
 (50+1)/(100 + 20,000) = .0025!

Try

where # < 1.

PLaPlace(w|uv) =
C(uvw) + λ

C(uv) + λ ∗ V

What is Problem

Too much weight to unseen trigrams!

19,900/20,000 given to unseen!!!

Clearly too much

How many are actually likely to occur in
test text of size 10,000?

Sushi

At Sushi bar. So far seen 10 tuna, 3 unagi,
2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

How likely is it for next item to be salmon?

2/18? or ...

How likely is it to be new kind?

Good-Turing Discounting

How many types of sushi seen once? 3

Use this to predict probability for new.

Let Si = set of words that occur i times.

Let N1 = size of S1. Initial estimate of prob
of new words is N1/N.

For sushi: 3/18

Must adjust other probabilities, too!

Let S2 = words occur twice, N2 = size of
S2, ...

Good-Turing

Normally best estimate is all words in Sc
occur c times, but must adjust because gave
probability to N0, which not occur at all.

Good-Turing says use

c† = (c+1)*Nc+1/Nc for c>0

If w in Sc, est prob at c†/N

Easy exercise shows !c $ 1 c*Nc = N and

N1 + !c$0(c†)*Nc = N

Sushi

Using Good-Turing:

P(new species) = 3/18 = .1666...

If know how many missing, can get prob of each

PGT(yellowtail) (= PGT(octopus) = PGT(shrimp))
 = (2*(1/3))/18 = .0372...,
compared with P(yellowtail) = 1/18 = .0555...

PGT(salmon) = (3*(1/1))/18 = .1666...
compared with P(salmon) = 2/18 = .111...

Works better if lots of data ...

What about PGT(tuna)?

Still Problems

Can’t compute c† = (c+1)Nc+1/Nc if Nc is 0

Smooth data by fitting log(Nc) to linear
regression on c: Find a, b to find best fit for
log(Nc) = a + b log c

Tend not to use c† for large values of c (> k)
(e.g. c > 5). Must readjust:

 for 1 % c % kc
† =

(c + 1)Nc+1

Nc
− c

(k+1)Nk+1

N1

1 −

(k+1)Nk+1

N1

Other Attempts

Linear interpolation: Estimate prob as an
average of lower-order n-grams:

where #1 + #2 + #3 = 1

Fit data to find optimal #’s.

P̂ (z|x, y) = λ1P (z|x, y) + λ2P (z|y) + λ3P (z)

Backoff

 P†(z|x,y), if C(xyz) > 0

Pkatz(z|x,y) = &(x,y)Pkatz(z|y), else if C(x,y) > 0
 P†(z), otherwise

where
Pkatz(z|y) = P†(z|y), if C(yz) > 0

&(y)P†(z), otherwise{

{

!’s required to get true probability

POS Tagging

Parts of Speech

Predict behavior of previously unseen
words.

Divide into classes that behave similarly

Traditionally: noun, verb, pronoun,
preposition, adverb, conjunction, adjective,
and article

Brown (87), Penn (45), Susanne (353)

What is use of POS?

Tell us what words likely occur in
neighborhood:

adjective -> noun

personal pronoun -> verbs

possessive pronoun -> nouns

Speech synthesis:

Ex.: object, content, discount

Speech recognition

Help in info retrieval

Parts of Speech

Closed Classes (fixed membership):

prepositions, determiners, pronouns,
conjunctions, aux. verbs, particles, numerals

usually function words - freq. occurring, often
short. Differ more from lang to lang.

Open classes

nouns (proper/common, count/mass), verbs,
adjectives, adverbs

adverbs a mess:

Unfortunately, John walked home extremely slowly
yesterday.

Penn Tagset

POS Tagging

Assignment of POS tag to each word &
punctuation marker in corpus:

“/“ The/DT guys/NNS that/WDT make/VBP traditional/

JJ hardware/NN are/VBP really/RB being/VBG

obsoleted/VBN by/IN microprocessor-based/JJ

machines/NNS ,/, ”/” said/VBD Mr./NNP Benton/

NNP ./.

Must resolve ambiguities

Brown corpus: 11.5% of word types &
40% of tokens are ambiguous

though some easily recognizable!

Ambiguity in Brown

Corpus

Unambiguous (1 tag): 35,340

Ambiguous (2-7): 4,100

2 tags 3,760

3 tags 264

4 tags 61

5 tags 12

6 tags 2

7 tags 1

Determining Tags

Some tags more likely than others.

Assign most likely - gives 90% accuracy

Use POS tags of adjacent words:

the/AT red/JJ drink/NN versus

the/AT red/JJ drink/VBP

Kinds of Taggers

Rule-Based Tagger - English Two Level
Analysis

Stochastic Tagger: Hidden Markov Model

Transformation-based Tagger

Rule-Based Taggers

Basic idea:

Use dictionary to assign all reasonable tags to
words

Remove tags according to set of rules:
if word+1 is an adj, adv, or quantifier and the following is a
sentence boundary and word-1 is not a verb like “consider” then

eliminate non-adv else eliminate adv.

Typically more than 1000 hand-written rules, but may also be

machine-learned.

ENGTWOL Lexicon

Stage 1

Run through lexicon transducer to get all
parts of speech

Ex.: Pavlov had shown that salivation ...

Pavlov PAVLOV N NOM SG PROPER

had HAVE V PAST VFIN SVO
 HAVE PCP2 SVO

shown SHOW PCP2 SVOO SV

that ADV
 PRON DEM SG
 DET CENTRAL DEM SG
 CS

salivation N NOM SG

STAGE 2

Apply constraints to rule out cases:

Ex: Adverbial “that” rule:

Given input: “that”

If next word is adj, adverb, or quantifier
and following next is a sentence boundary and
previous word is not a verb like “consider”
which allows adjs as object complements

then eliminate non-ADV tags

else eliminate ADV tag

NLTK & Tagging

Simplest possible tagger assigns all “noun”

import nltk

inputText = "You've made that same mistake 16 times now!"
inputTokens = inputText.split()

defaultTagger = nltk.DefaultTagger('NN')
for t in defaultTagger.tag(inputTokens):
 print t

Regular Expression

Taggers

Use regular expressions to select:

import nltk

default_pattern = (r'.*', 'NN')
cd_pattern = (r'\b[0-9]+(?:\.[0-9]+)?\b', 'CD')
patterns = [cd_pattern, default_pattern]
NN_CD_tagger = nltk.RegexpTagger(patterns)
print NN_CD_tagger.tag(inputTokens):

[("You've", 'NN'), ('made', 'NN'), ('that', 'NN'),
('same', 'NN'), ('mistake', 'NN'), ('16', 'CD'), ('times',
'NN'), ('now!', 'NN')]

Any Questions?

