CS 181:

NATURAL LANGUAGE PROCESSING

Lecture 6: N-Grams & PoS Tagging

KIM BRUCE POMONA COLLEGE SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

MORE PROBLEMS W/ N-GRAMS

Sparsity of data

- Even common words don't occur very often
 - In a million words:
 - "kick" occurs about 10 times
 - "wrist" occurs about 5 times
 - Even common 3 word phrases are unlikely to appear!
 - How to cope with missing data?

IT'S BAD!						
count	2-grams	3-grams				
1	8,045,024	53,737,350				
2	2,065,469	9,229,958				
3	970,434	3,654,791				
> 4	3,413,290	8,728,789				
> 0	14,494,217	75,349,888				
possible	6.8 x 10 ¹⁰	1.7 x 10 ¹⁶				

Taken from data set w/ 261,741 words 365,000,000 words training!

TOO MANY ZEROES

- 6.8 x 10¹⁰ possible bigrams, but only 3.65 x 10⁸ words in training set.
- Trigrams worse!
- Can't get data set large enough to get them all -- even those that could occur.
- Solution:
 - Redistribute probability to *save* some for those that haven't been encountered.

LAPLACE SMOOTHING

$$P_{LaPlace}(w|uv) = \frac{C(uvw) + 1}{C(uv) + V}$$

- If add 1 to counts of each trigram, then must add V = size of vocabulary so still sums to 1.
- All moved from zero.
- Changes probability too much!

SURPRISING RESULTS

- Suppose have 20,000 word vocabulary and "threw the" occurs 100 times and "threw the ball" 50 times in 1,000,000 words training
- $P(\text{ball} \mid \text{threw the}) \approx 50/100 = .5$
- $\begin{array}{l} & \mathbb{P}_{\text{LaPlace}}(\text{ball} \mid \text{threw the}) \approx \\ & (50+1)/(100+20,000) = .0025! \\ & \text{Try } P_{\text{LaPlace}}(w | uv) = \frac{C(uvw) + \lambda}{C(uv) + \lambda * V} \\ & \text{where } \lambda < 1. \end{array}$

WHAT IS PROBLEM

- Too much weight to unseen trigrams!
 19,900/20,000 given to unseen!!!
- Clearly too much
- How many are actually likely to occur in test text of size 10,000?

SUSHI

- At Sushi bar. So far seen 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail
- How likely is it for next item to be salmon?
 2/18? or ...
- How likely is it to be new kind?

GOOD-TURING DISCOUNTING

- How many types of sushi seen once? 3
- Use this to predict probability for new.
- Let Si = set of words that occur i times.
- Let N₁ = size of S₁. Initial estimate of prob of new words is N₁/N.
 For sushi: 3/18
 - Must adjust other probabilities, too!
- Let S₂ = words occur twice, N₂ = size of S₂, ...

GOOD-TURING

- Normally best estimate is all words in S_c occur c times, but must adjust because gave probability to N₀, which not occur at all.
- * Good-Turing says use $c^{\dagger} = (c+1)*N_{c+1}/N_c$ for c>0
- \circledast If w in S_c , est prob at c^\dagger/N
- [∞] Easy exercise shows $\sum_{c \ge 1} c^* N_c = N$ and $N_1 + \sum_{c \ge 0} (c^{\dagger})^* N_c = N$

SUSHI

- Source Using Good-Turing:
 - P(new species) = 3/18 = .1666...
 If know how many missing, can get prob of each
 - PGT(vellowtail) (= $P_{GT}(octopus)$ = $P_{GT}(shrimp)$)
 - = (2*(1/3))/18 = .0372...,
 - compared with P(yellowtail) = 1/18 = .0555... P_{GT}(salmon) = (3*(1/1))/18 = .1666...
 - compared with P(salmon) = 2/18 = .111...
- Works better if lots of data ...
- What about PGT(tuna)?

STILL PROBLEMS

- Can't compute c[†] = (c+1)N_{c+1}/N_c if N_c is 0
- * Smooth data by fitting $log(N_c)$ to linear regression on c: Find a, b to find best fit for $log(N_c) = a + b log c$
- Tend not to use c[†] for large values of c (> k) (e.g. c > 5). Must readjust:

$$\ \ \, \circ \ \ \, c^{\dagger} = \frac{(c+1)\frac{N_{c+1}}{N_c} - c\frac{(k+1)N_{k+1}}{N_1}}{1 - \frac{(k+1)N_{k+1}}{N_1}} \quad \text{for } 1 \leq c \leq k$$

OTHER ATTEMPTS

Linear interpolation: Estimate prob as an average of lower-order n-grams:

 $\hat{P}(z|x,y) = \lambda_1 P(z|x,y) + \lambda_2 P(z|y) + \lambda_3 P(z)$

where $\lambda_1 + \lambda_2 + \lambda_3 = 1$

* Fit data to find optimal λ 's.

PARTS OF SPEECH

- Predict behavior of previously unseen words.
- Divide into classes that behave similarly
- Traditionally: noun, verb, pronoun, preposition, adverb, conjunction, adjective, and article
- Brown (87), Penn (45), Susanne (353)

- adjective -> noun
- personal pronoun -> verbs
- possessive pronoun -> nouns
- Speech synthesis:
 - Ex.: object, content, discount
- Speech recognition
- # Help in info retrieval

PARTS OF SPEECH

- Closed Classes (fixed membership):
 - prepositions, determiners, pronouns, conjunctions, aux. verbs, particles, numerals
 - usually function words freq. occurring, often short. Differ more from lang to lang.
- Open classes
 - nouns (proper/common, count/mass), verbs, adjectives, adverbs
 - adverbs a mess:
 - Unfortunately, John walked home extremely slowly yesterday.

PENN TAGSET

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
11	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	"	Left quote	' or "
POS	Possessive ending	's	"	Right quote	' or "
PRP	Personal pronoun	I, you, he	(Left parenthesis	[, (, {, <
PRP\$	Possessive pronoun	your, one's		Right parenthesis],), }, >
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	.!?
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	:;
RP	Particle	up, off			

POS TAGGING

- Assignment of POS tag to each word & punctuation marker in corpus:
 - "/" The/DT guys/NNS that/WDT make/VBP traditional/ JJ hardware/NN are/VBP really/RB being/VBG obsoleted/VBN by/IN microprocessor-based/JJ machines/NNS J, "/" said/VBD Mr/NNP Benton/ NNP J.
- Must resolve ambiguities
- Brown corpus: 11.5% of word types & 40% of tokens are ambiguous
 though some easily recognizable!

AMBIGUITY IN BROWN CORPUS

- ** Unambiguous (1 tag): 35,340
- * Ambiguous (2-7): 4,100

2 tags	3,760
3 tags	264
4 tags	61
5 tags	12
6 tags	2
7 tags	1

DETERMINING TAGS

- Some tags more likely than others.
- Assign most likely gives 90% accuracy
- Use POS tags of adjacent words:
 - * the/AT red/JJ drink/NN versus
 - the/AT red/JJ drink/VBP

KINDS OF TAGGERS

- Rule-Based Tagger English Two Level Analysis
- Stochastic Tagger: Hidden Markov Model
- Transformation-based Tagger

RULE-BASED TAGGERS

- Basic idea:
 - Use dictionary to assign all reasonable tags to words
 - Remove tags according to set of rules:
 - if word+1 is an adj, adv, or quantifier and the following is a sentence boundary and word-1 is not a verb like "consider" then eliminate non-adv else eliminate adv. Typically more than 1000 hand-written rules, but may also be
 - machine-learned.

ENGTWOL LEXICON

STAGE 2

- Apply constraints to rule out cases:
- * Ex: Adverbial "that" rule:

Given input: "that"

If next word is adj, adverb, or quantifier and following next is a sentence boundary and previous word is not a verb like "consider" which allows adjs as object complements

then eliminate non-ADV tags else eliminate ADV tag

NLTK & TAGGING

Simplest possible tagger assigns all "noun"

import nltk

inputText = "You've made that same mistake 16 times now!" inputTokens = inputText.split()

defaultTagger = nltk.DefaultTagger('NN') for t in defaultTagger.tag(inputTokens): print t

REGULAR EXPRESSION TAGGERS

Use regular expressions to select:

import nltk

default_pattern = (r'.*', 'NN') $cd_pattern = (r'b[0-9]+(?:\[0-9]+)?b', 'CD')$ patterns = [cd_pattern, default_pattern] NN_CD_tagger = nltk.RegexpTagger(patterns) print NN_CD_tagger.tag(inputTokens):

[("You've", 'NN'), ('made', 'NN'), ('that', 'NN'), (same', 'NN'), ('mistake', 'NN'), ('16', 'CD'), ('times', 'NN'), ('now!', 'NN')]

ANY QUESTIONS?