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Disclaimer: Slide contents borrowed from many sources on web!

More Problems w/ N-grams

Sparsity of data

Even common words don’t occur very often

In a million words:

“kick” occurs about 10 times

“wrist” occurs about 5 times

Even common 3 word phrases are unlikely to appear!

How to cope with missing data?

It’s bad!

count 2-grams 3-grams

1 8,045,024 53,737,350

2 2,065,469 9,229,958

3 970,434 3,654,791

> 4 3,413,290 8,728,789

> 0 14,494,217 75,349,888

possible 6.8 x 1010 1.7 x 1016

Taken from data set w/ 261,741 words
365,000,000 words training!

Too Many Zeroes

6.8 x 1010 possible bigrams, 
but only 3.65 x 108 words in training set.

Trigrams worse!

Can’t get data set large enough to get them 
all -- even those that could occur.

Solution:  

Redistribute probability to save some for 
those that haven’t been encountered.

Getting Rid of Zeroes

Zeroes for P(w | uv) come in two ways:

uvw doesn’t exist in training data

Even vw doesn’t occur!!

Make counts non-zero - how?

Must reduce other probabilities so that

      !w’ is word  P(w’| uv) = 1

LaPlace Smoothing

If add 1 to counts of each trigram, then 
must add V = size of vocabulary so still 
sums to 1.

All moved from zero.

Changes probability too much!

PLaPlace(w|uv) =
C(uvw) + 1

C(uv) + V



Surprising Results

Suppose have 20,000 word vocabulary and 
“threw the” occurs 100 times and “threw the 
ball” 50 times in 1,000,000 words training

P(ball | threw the) " 50/100 = .5

PLaPlace(ball | threw the) " 
               (50+1)/(100 + 20,000) = .0025!

Try

where # < 1. 

PLaPlace(w|uv) =
C(uvw) + λ

C(uv) + λ ∗ V

What is Problem

Too much weight to unseen trigrams!

19,900/20,000 given to unseen!!!

Clearly too much

How many are actually likely to occur in 
test text of size 10,000?

Sushi

At Sushi bar.  So far seen 10 tuna, 3 unagi, 
2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

How likely is it for next item to be salmon?

2/18? or ...

How likely is it to be new kind?

Good-Turing Discounting

How many types of sushi seen once?  3

Use this to predict probability for new.

Let Si = set of words that occur i times.

Let N1 = size of S1.  Initial estimate of prob 
of new words is N1/N.

For sushi: 3/18

Must adjust other probabilities, too!

Let S2 = words occur twice, N2 = size of 
S2, ...

Good-Turing

Normally best estimate is all words in Sc 
occur c times, but must adjust because gave 
probability to N0, which not occur at all.

Good-Turing says use 

c† = (c+1)*Nc+1/Nc for c>0

If w in Sc, est prob at c†/N

Easy exercise shows !c $ 1 c*Nc = N and

N1 + !c$0(c†)*Nc = N

Sushi

Using Good-Turing:

P(new species) = 3/18 = .1666...

If know how many missing, can get prob of each

PGT(yellowtail) (= PGT(octopus) = PGT(shrimp)) 
                          = (2*(1/3))/18 = .0372..., 
compared with P(yellowtail) = 1/18 =  .0555...

PGT(salmon) = (3*(1/1))/18 = .1666...
compared with P(salmon) = 2/18 =  .111...

Works better if lots of data ...

What about PGT(tuna)?



Still Problems

Can’t compute c† = (c+1)Nc+1/Nc if Nc is 0

Smooth data by fitting log(Nc) to linear 
regression on c:  Find a, b to find best fit for 
log(Nc) = a + b log c

Tend not to use c† for large values of c (> k) 
(e.g. c > 5).  Must readjust:

                                                  for 1 % c % kc
† =

(c + 1)Nc+1

Nc
− c

(k+1)Nk+1

N1

1 −

(k+1)Nk+1

N1

Other Attempts

Linear interpolation: Estimate prob as an 
average of lower-order n-grams:

where #1 + #2 + #3 = 1

Fit data to find optimal #’s.

P̂ (z|x, y) = λ1P (z|x, y) + λ2P (z|y) + λ3P (z)

Backoff

                          P†(z|x,y),     if C(xyz) > 0

Pkatz(z|x,y) =     &(x,y)Pkatz(z|y), else if C(x,y) > 0
                          P†(z),           otherwise

where        
Pkatz(z|y) =  P†(z|y),     if C(yz) > 0

&(y)P†(z),  otherwise{

{

!’s required to get true probability

POS Tagging

Parts of Speech

Predict behavior of previously unseen 
words.

Divide into classes that behave similarly

Traditionally: noun, verb, pronoun, 
preposition, adverb, conjunction, adjective, 
and article

Brown (87), Penn (45), Susanne (353)

What is use of POS?

Tell us what words likely occur in 
neighborhood: 

adjective -> noun

personal pronoun -> verbs

possessive pronoun -> nouns

Speech synthesis:

Ex.: object, content, discount

Speech recognition

Help in info retrieval



Parts of Speech

Closed Classes (fixed membership):

prepositions, determiners, pronouns, 
conjunctions, aux. verbs, particles, numerals

usually function words - freq. occurring, often 
short.  Differ more from lang to lang.

Open classes

nouns (proper/common, count/mass), verbs, 
adjectives, adverbs

adverbs a mess:

Unfortunately, John walked home extremely slowly 
yesterday.

Penn Tagset

POS Tagging

Assignment of POS tag to each word & 
punctuation marker in corpus:

“/“ The/DT guys/NNS that/WDT make/VBP traditional/

JJ hardware/NN are/VBP really/RB being/VBG 

obsoleted/VBN by/IN microprocessor-based/JJ 

machines/NNS ,/, ”/” said/VBD Mr./NNP Benton/

NNP ./. 

Must resolve ambiguities

Brown corpus:  11.5% of word types & 
40% of tokens are ambiguous 

though some easily recognizable!

Ambiguity in Brown 

Corpus

Unambiguous (1 tag): 35,340

Ambiguous (2-7): 4,100

2 tags 3,760

3 tags 264

4 tags 61

5 tags 12

6 tags 2

7 tags 1

Determining Tags

Some tags more likely than others.

Assign most likely - gives 90% accuracy

Use POS tags of adjacent words:

the/AT red/JJ drink/NN  versus

the/AT red/JJ drink/VBP

Kinds of Taggers

Rule-Based Tagger - English Two Level 
Analysis

Stochastic Tagger:  Hidden Markov Model

Transformation-based Tagger



Rule-Based Taggers

Basic idea:

Use dictionary to assign all reasonable tags to 
words

Remove tags according to set of rules:
if word+1 is an adj, adv, or quantifier and the following is a 
sentence boundary and word-1 is not a verb like “consider” then 

eliminate non-adv else eliminate adv.

Typically more than 1000 hand-written rules, but may also be 

machine-learned.

ENGTWOL Lexicon

Stage 1

Run through lexicon transducer to get all 
parts of speech

Ex.:  Pavlov had shown that salivation ...

Pavlov      PAVLOV N NOM SG PROPER

had            HAVE V PAST VFIN SVO
                  HAVE PCP2 SVO

shown       SHOW PCP2 SVOO SV

that            ADV
                   PRON DEM SG
                   DET CENTRAL DEM SG
                   CS

salivation   N NOM SG

STAGE 2

Apply constraints to rule out cases:

Ex:  Adverbial “that” rule:

Given input: “that”

If next word is adj, adverb, or quantifier
and following next is a sentence boundary and 
previous word is not a verb like “consider” 
which allows adjs as object complements

then eliminate non-ADV tags

else eliminate ADV tag

NLTK & Tagging

Simplest possible tagger assigns all “noun”

import nltk

inputText = "You've made that same mistake 16 times now!"
inputTokens = inputText.split()

defaultTagger = nltk.DefaultTagger('NN')
for t in defaultTagger.tag(inputTokens):
    print t

Regular Expression 

Taggers

Use regular expressions to select:

import nltk

default_pattern = (r'.*', 'NN') 
cd_pattern = (r'\b[0-9]+(?:\.[0-9]+)?\b', 'CD') 
patterns = [cd_pattern, default_pattern] 
NN_CD_tagger = nltk.RegexpTagger(patterns) 
print NN_CD_tagger.tag(inputTokens):

# [("You've", 'NN'), ('made', 'NN'), ('that', 'NN'), 
('same', 'NN'), ('mistake', 'NN'), ('16', 'CD'), ('times', 
'NN'), ('now!', 'NN')]



Any Questions?


