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Probability

Run experiments (trials)

Observe set of all possible outcomes

Sample space, !:

3 coin flips:  {TTT, TTH, THT, THH, HTT, 
HTH, HHH, HHT}

Part of speech of word:  dogs: {N Pl, V 3Sg}

Compute probability of basic events, use to 
compute probability of actual events of 
interest
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Events

Event, A, is set of basic outcomes - subset of 

sample space, !

At least 2 heads: A = {HHH, HHT, HTH, THH}

dogs is noun:  A = {N Pl}

A = ! is certain event, 
A = ! is impossible event

Notation: A = ! - A

Event space, F, is P(!), collection of all 

subsets of sample space, !.
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Probability

Probability function, P, assigns probability 
mass to events in event space, F, where

P: F " [0,1]

P(!) = 1

Countable additivity: For disjoint events Aj in F,

P(#j Aj) = #j P(Aj)

Consequences: P(A) = 1 - P(A), 
                          "a$ ! P({a}) = 1, 
                          P(!) = 0,

                          A % B implies P(A) # P(B)
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Estimating Probability

Repeat experiment many times, say N.

Count number of basic outcomes that are 
members of A, say C.

As N increases, C/N should approach a 
constant value, best estimate for P(A).

E.g., Coin is tossed 3 times, what is 
probability of getting at least 2 heads.

Try it 1000 times, record when at least two 
heads, say C times.

Estimate P(at least 2 heads) = C/1000
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Using Distributions

If “fair” coin, then probability of head 
should be .5

Uniform distribution:

Each basic outcome is equally likely

P(HHH) = P(HHT) = ... = P(TTT)

Thus, P(at least two heads) = 4/8 = .5
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Joint & Conditional 

Probabilities

The joint probability of A and B both 
happening, P(A & B), is also written 

P(A,B).

The conditional probability of A, given B, 
is P(A|B) = P(A,B) / P(B).

Hence P(A,B) = P(A|B) * P(B)

Bayes rule:  P(A|B)*P(B) = P(B|A)*P(A)

Hence P(A|B) = (P(B|A)*P(A)) / P(B)

Can calculate one conditional if know other.
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Independence

Can we compute P(A,B) from P(A) & P(B)?

P(A,B) = P(B|A)*P(A)

Now, P(B|A) = P(B) iff probability of B is 
unaffected by whether or not A is true.

Def:  Two events A and B are independent iff 
P(A,B) = P(A)*P(B), and otherwise 
dependent.
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Independence

If events are independent, then need much 
less data to be saved,

Though we’ll leverage info on dependency 
to disambiguate data.
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Chain Rule

Let Ai
j = Ai, Ai+1, ..., Aj

P(A1, A2, A3, ..., An) = P(A1
n) =

     = P(An | A1
n-1)*P(A1

n-1)
     = P(An | A1

n-1)*P(An-1 | A1
n-2)*P(A1

n-2)
     ... 
     = P(An | A1

n-1)*P(An-1 | A1
n-2)*...*P(A1)

Simplifies if all independent!
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Using Chain Rule

What is likelihood of 3 heads in 3 tosses:

Based on counts:  1 / 8

Chain rule: 

P(H1H2H3) = P(H3|H1H2)*P(H2|H1)*P(H1) 
                     = P(H3)*P(H2)*P(H1)
                     = 1/2 * 1/2 * 1/2 = 1/8
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Bayesian Decision Theory

Can choose which model best:

 
                 

  

Usually ignore denominator in 
comparisons

P (model1|data) =
P (data|model1) × P (model1)

P (data)

P (model2|data) =
P (data|model2) × P (model2)

P (data)
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Using Bayes ...

Ex: P(French | glacier, melange) vs
       P(English | glacier, melange)

Ex:  Test authorship or identity of text

P(Hamlet | “hand”, “death”)

P(Oliver | “hand”, “death”)
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Chain Rule problems

P(A1
n) = P(An | A1

n-1)*P(An-1 | A1
n-2)*...*P(A1)

History-based model

Calculating last few based on training data 
fine, but eventually get little or no data:

P(A1) = 2536/158796, P(A2 | A1) = 128/2536,
... P(A4 | A1, A2, A3) = 0/8

Results in P(A1
n)=0, yet not likely
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Problems w/Training Data

Estimate each of the probabilities from 
training data, but get unique sequences!

Some words - let alone whole phrases - 
may not even appear in training data.

Give up accuracy

 Rather than computing probability of a word 
given its entire history, approximate the history 
by a limited number, n, of preceding words.

Called nth-order Markov assumption
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Estimating Probabilities

Trigram model results in simplification:

P(A1
n) = P(An | An-2, An-1)*

        P(An-1 | An-3, An-2)*...*P(A2 |A1)*P(A1)

 Can get much better estimates from data!

Use maximum likelihood estimation (MLE)

 

Approx for seqs:  

P (C|A, B) =
P (A, B, C)

∑
d
P (A, B, d)

P (w3|w1w2) ≈
C(w1w2w3)

C(w1w2)
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Examples

P(“horses”) = P(“h”)*P(“o”| “h”)
                     *P(“r”| “ho”)*P(“s”| “or”)
                     * ... *P(“s”| “se”)

If want word “horses” then often add “<s>” 
at beginning and </s> at end.
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N-gram Models

Used in speech recognition, OCR, context-
sensitive spelling correction.

Appallingly simple from linguistic POV

Relations can be arbitrarily distant

The man on the sidewalk, without pausing to look at 
what was happening down the street, and quite 
oblivious to the situation that was about to befall him, 
confidently strode into the center of the road.

But not usually ...
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N-gram Models

Collins (1997):  if treat noun phrases as a 
unit, 74% of dependencies in WSJ part of 
Penn Treebank are with an adjacent word.

95% with word less than 5 words away
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Evaluating

Best is to test in application

Predict using “perplexity” on training data

Smaller perplexity -- more predictable

PP (W ) = P (w1 . . . wn)−
1

n

= n

√

√

√

√

N
∏

i=1

1

P (wi|wi−2wi−1)
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Perplexity

Strings of digits:

all 0’s - perplexity = 1

{0,1} same freq, perplexity = 2

{0,...,9} all same freq, perplexity = 10

0 occurs 10x more often, perplexity = 5.5

WSJ words, preplexity = 109

Perplexity related to information theoretic 
entropy
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Using N-grams for 

classification

Separate documents into training and 
testing

Tokenize into words

Count occurrences of each word in each 
document.

Estimate P(w|c) by ratio of counts

For each test document

22

Classifying Documents

Given some text, estimate which class it 
came from.

E.g., P(Hamlet | “ghost”, “walks”)

Use Bayesian:

P(Hamlet | “ghost”, “walks”) = P(“ghost”, 
“walks” | Hamlet) * P(Hamlet)
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More Problems

Sparsity of data

Even common words don’t occur very often

In a million words:

“kick” occurs about 10 times

“wrist” occurs about 5 times

Even common 3 word phrases are unlikely to appear!

How to cope with missing data?
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It’s bad!

count 2-grams 3-grams

1 8,045,024 53,737,350

2 2,065,469 9,229,958

3 970,434 3,654,791

> 4 3,413,290 8,728,789

> 0 14,494,217 75,349,888

possible 6.8 x 1010 1.7 x 1016

Taken from data set w/ 261,741 words
365,000,000 words training!
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Too Many Zeroes

6.8 x 1010 possible bigrams, 
but only 3.65 x 108 words in training set.

Trigrams worse!

Can’t get data set large enough to get them 
all -- even those that could occur.

Solution:  

Redistribute probability to save some for 
those that haven’t been encountered.
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Any Questions?
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