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CATCHING TYPOS

# Recognizing misspellings easy - check

dictionary

# But lots of suffixes and prefixes: use fsa!

# What about making corrections to isolated

words?

# Look for spellings that are “close” to word

# Context-dependent errors detection/correction

3 Transpositions may accidentally create real words!

SPELLING CORRECTION

% Map words into equivalence classes that
1ike1y hold correct spelling.

# CS 51 lab: canonize words by removing vowels
and doubled consonants: canonize lab

% Find all words w/same canonization as word.

s Alternatively, develop metric and find real
world closest to word.

% Use minimum edit distance

MINIMUM EDIT DISTANCE

# Can convert any word to another by series

of additions, deletions, and substitutions.

# Once specify cost of each operation then can
measure distance between them

% We'll use 1 for cost of addition/deletion, 2 for
substitution.

% Use same algorithm if choose different costs, but
get different answer.

EXAMPLE

3 Convert “INTENTION” to “EXECUTION"
% INTENTION

EXAMPLE

3 Convert “INTENTION” to “EXECUTION”
NTENTION delete 1

cost = 1




EXAMPLE

3 Convert “INTENTION” to “EXECUTION"

ETENTION subst E for N

cost =3

EXAMPLE

3 Convert “INTENTION” to “EXECUTION"

EXENTION subst X for T

cost =5

EXAMPLE

3 Convert “INTENTION" to “EXECUTION"
EXECTION subost C for N

cost =7

EXAMPLE

3 Convert “INTENTION” to “EXECUTION"

EXECUTION nvert U

cost =8

OPTIMALITY

3¢ How can we know if that 1s the minimal
edit distance?

s Check all possible conversions? Too
many!

SOLVING PROBLEMS

# Optimal substructure property: The

optimal solutions to a problem contain
optimal solutions to its subproblems.

3 Ex: Shortest distance from LA to NYC

% If shortest path goes through Chicago then
portion of the path from LA to Chicago and
from Chicago to NYC are also optimal.




DYNAMIC PROGRAMMING

s If problem has overlapping subproblems
(solve same problem repeatedly) & optimal
substructure property then can use
dynamic programming.

# Key idea is to save solutions to

subproblems so don’t have to recalculate

% Memoization!

# Can do top-down or bottom-up
¢ We'll do bottom-up

MINIMUM EDIT DISTANCE

# What is minimal cost of transforming v to
9
w?

# Transform to problem with subproblems.

# Define distance[i,j] to be min cost of
transforming v[1.J] to w[1..i]

# Does it satisfy optimal substructure
property?
# Does it have overlapping subproblems?

MINIMUM EDIT DISTANCE

s Let lvl =m, lwl =n

# Consider last move in aligning. 3 choices:
% Add move: Take moves changing v to w[1:n-1]
& insert w[n]
# Delete move: Take moves changing v[1:m-1] to
w & delete v[m]
# Replace move: Take moves changing v[1:m-1]
to w[1:n-1] & change v[m] to w[n]

MINIMUM EDIT DISTANCE

s Recursive solution:
distance[i-1,j] + ins_cost(wi)
distance[i,j] = min< distance[i-1,j-1] + sub_cost(wi,v;)

distance[i,j-1] + del_cost(vj)

ins_cost = 1
del_cost = 1

sub_cost = 0 if wi = vj, 2 otherwise
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Recover edits from table

def minEditDist(target, source):
n = len(target)
m = len(source)

#m+1 rows, n+1 cols
distance = [[0 for i in range(n+1)] for j in range(m+1)]

for col in range(1,n+1):
distance[0][col] = distance[0][col-1] + 1
for row in range(1,m+1):

distance[row][0]= distance[row-1][0] + 1

for col in range(1,n+1):
for row in range(1,m+1):
distance[row][col] = min(
distance[row-1][col] + 1,
distance[row][col-1] + 1,
distance[row-1][col-1]+substCost(source[row-1],target[col-1]))
return distance[m][n]




VARIANTS & IMPROVEMENTS

¢ Needleman-Wunch distance: cost of
substitution varies depending on
characters

% E.g., distance btn characters nearby is less
# Want to match names: Kim Barry Bruce,

Kim B. Bruce, K. B. Bruce, Kim Bruce, K.

Bruce.

% One idea: n character gap costs less than n gaps
of length 1.

N-GRAMS

# N-gram is sequence of N words that occur
sequentially in text

# Determine probabilities of N-grams

s Use to predict which word is most likely to
be correct in context.

# Can help in spelling correction

N-GRAMS

WHICH IS MOST PROBABLE?

# First Example:

# ... I think they’re OK ...
.. I think there OK ...
¢ ... I think their OK ...

% Second Example:

# ... by the way, are they're likely to ...

.. by the way, are there likely to ...
... by the way, are their likely to ...

USING CONTEXT

# Spell-checking:

# They are leaving in about 15 minuets.

# Part of speech tagging
# Which meaning of “dogs”

2 Machine translation

# Speech & handwriting recognition

# Compare possible word decodings

s Authorship identification

WHICH IS MOST PROBABLE?

% Third Example:

# How do you wreck a nice beach?

% How do you recognize speech?

% Fourth Example:

% Put the file in the folder
s Put the file and the folder




COUNTING WORDS

¢ Types vs Tokens

s “They picnicked by the pool, then lay back on
the grass and looked at the stars”

# 16 tokens, 14 types
# Shakespeare: 884,647 tokens, 29,006 types
# Also interested in number of lemmas

# Remove affixes

LANGUAGE MODELS

# Develop a “language model” to help us

predict the likelihood of strings.

# In English:

3 P(the big dog) > P(dog big the) > P(dgo gib eth)

# How can the computer know this?
% Each sentence is sequence w1, ..., Wh

% How determine P(wj, ..., w,)

N-GRAMS

st Computes a probability for observed input
# Probability is likelihood of observation

being generated by same source as training
data.

# Different models arise from different
training sets: English vs. French

3¢ Problems!

ANY QUESTIONS?




