Cs 181:
NATURAL LANGUAGE
PROCESSING
Lecture 4: Dynamic Programming &
Minimum String Edit Distance

K1 M B RUCE
POMONA COLLEGE
SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

CATCHING TYPOS

Recognizing misspellings easy - check

dictionary

But lots of suffixes and prefixes: use fsa!

What about making corrections to isolated

words?

Look for spellings that are “close” to word

Context-dependent errors detection/correction

3 Transpositions may accidentally create real words!

SPELLING CORRECTION

% Map words into equivalence classes that
1ike1y hold correct spelling.

CS 51 lab: canonize words by removing vowels
and doubled consonants: canonize lab

% Find all words w/same canonization as word.

s Alternatively, develop metric and find real
world closest to word.

% Use minimum edit distance

MINIMUM EDIT DISTANCE

Can convert any word to another by series

of additions, deletions, and substitutions.

Once specify cost of each operation then can
measure distance between them

% We'll use 1 for cost of addition/deletion, 2 for
substitution.

% Use same algorithm if choose different costs, but
get different answer.

EXAMPLE

3 Convert “INTENTION” to “EXECUTION"
% INTENTION

EXAMPLE

3 Convert “INTENTION” to “EXECUTION”
NTENTION delete 1

cost = 1

EXAMPLE

3 Convert “INTENTION” to “EXECUTION"

ETENTION subst E for N

cost =3

EXAMPLE

3 Convert “INTENTION” to “EXECUTION"

EXENTION subst X for T

cost =5

EXAMPLE

3 Convert “INTENTION" to “EXECUTION"
EXECTION subost C for N

cost =7

EXAMPLE

3 Convert “INTENTION” to “EXECUTION"

EXECUTION nvert U

cost =8

OPTIMALITY

3¢ How can we know if that 1s the minimal
edit distance?

s Check all possible conversions? Too
many!

SOLVING PROBLEMS

Optimal substructure property: The

optimal solutions to a problem contain
optimal solutions to its subproblems.

3 Ex: Shortest distance from LA to NYC

% If shortest path goes through Chicago then
portion of the path from LA to Chicago and
from Chicago to NYC are also optimal.

DYNAMIC PROGRAMMING

s If problem has overlapping subproblems
(solve same problem repeatedly) & optimal
substructure property then can use
dynamic programming.

Key idea is to save solutions to

subproblems so don’t have to recalculate

% Memoization!

Can do top-down or bottom-up
¢ We'll do bottom-up

MINIMUM EDIT DISTANCE

What is minimal cost of transforming v to
9
w?

Transform to problem with subproblems.

Define distance[i,j] to be min cost of
transforming v[1.J] to w[1..i]

Does it satisfy optimal substructure
property?
Does it have overlapping subproblems?

MINIMUM EDIT DISTANCE

s Let lvl =m, lwl =n

Consider last move in aligning. 3 choices:
% Add move: Take moves changing v to w[1:n-1]
& insert w[n]
Delete move: Take moves changing v[1:m-1] to
w & delete v[m]
Replace move: Take moves changing v[1:m-1]
to w[1:n-1] & change v[m] to w[n]

MINIMUM EDIT DISTANCE

s Recursive solution:
distance[i-1,j] + ins_cost(wi)
distance[i,j] = min< distance[i-1,j-1] + sub_cost(wi,v;)

distance[i,j-1] + del_cost(vj)

ins_cost = 1
del_cost = 1

sub_cost = 0 if wi = vj, 2 otherwise

DISTANCE[I,J]

A R K
T TSk Lk ES b
I I U s R
P | 2 | 1234

t t
A 3 2 leg— 273

1 i t T 1
RS R RS .
K 5 4 374 3

Recover edits from table

def minEditDist(target, source):
n = len(target)
m = len(source)

#m+1 rows, n+1 cols
distance = [[0 for i in range(n+1)] for j in range(m+1)]

for col in range(1,n+1):
distance[0][col] = distance[0][col-1] + 1
for row in range(1,m+1):

distance[row][0]= distance[row-1][0] + 1

for col in range(1,n+1):
for row in range(1,m+1):
distance[row][col] = min(
distance[row-1][col] + 1,
distance[row][col-1] + 1,
distance[row-1][col-1]+substCost(source[row-1],target[col-1]))
return distance[m][n]

VARIANTS & IMPROVEMENTS

¢ Needleman-Wunch distance: cost of
substitution varies depending on
characters

% E.g., distance btn characters nearby is less
Want to match names: Kim Barry Bruce,

Kim B. Bruce, K. B. Bruce, Kim Bruce, K.

Bruce.

% One idea: n character gap costs less than n gaps
of length 1.

N-GRAMS

N-gram is sequence of N words that occur
sequentially in text

Determine probabilities of N-grams

s Use to predict which word is most likely to
be correct in context.

Can help in spelling correction

N-GRAMS

WHICH IS MOST PROBABLE?

First Example:

... I think they’re OK ...
.. I think there OK ...
¢ ... I think their OK ...

% Second Example:

... by the way, are they're likely to ...

.. by the way, are there likely to ...
... by the way, are their likely to ...

USING CONTEXT

Spell-checking:

They are leaving in about 15 minuets.

Part of speech tagging
Which meaning of “dogs”

2 Machine translation

Speech & handwriting recognition

Compare possible word decodings

s Authorship identification

WHICH IS MOST PROBABLE?

% Third Example:

How do you wreck a nice beach?

% How do you recognize speech?

% Fourth Example:

% Put the file in the folder
s Put the file and the folder

COUNTING WORDS

¢ Types vs Tokens

s “They picnicked by the pool, then lay back on
the grass and looked at the stars”

16 tokens, 14 types
Shakespeare: 884,647 tokens, 29,006 types
Also interested in number of lemmas

Remove affixes

LANGUAGE MODELS

Develop a “language model” to help us

predict the likelihood of strings.

In English:

3 P(the big dog) > P(dog big the) > P(dgo gib eth)

How can the computer know this?
% Each sentence is sequence w1, ..., Wh

% How determine P(wj, ..., w,)

N-GRAMS

st Computes a probability for observed input
Probability is likelihood of observation

being generated by same source as training
data.

Different models arise from different
training sets: English vs. French

3¢ Problems!

ANY QUESTIONS?

