CS 181: NATURAL LANGUAGE PROCESSING

Lecture 17: Computational Semantics

KIM BRUCE POMONA COLLEGE SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

SEMANTIC AMBIGUITY

- * Some ambiguities arise at semantic level
 - * have same parse trees, but different meanings
- Every student read a book.
 - * They each picked their own.
 - Some liked it, while others did not.

"OBVIOUS" SEMANTICS

[[Every student read a book]]

= [[Every student]] ([[read a book]])

[[Every student]] = $\lambda Q. \forall x (student(x) \Rightarrow Q(x))$

[[read a book]] = λ s:D. $\exists y (book(y) \land read(s,y))$

[[Every student]] ([[read a book]])

- = $\forall x (student(x) \Rightarrow (\lambda s: D. \exists y (book(y) \land read(s,y)))(x))$
- $= \forall x (student(x) \Rightarrow \exists y (book(y) \land read(x,y)))$

WHAT ABOUT OTHER MEANING?

- * Montague [1973]: Rewrite sentence:
 - A book, every student read it.
- * "It" creates a hole to be filled:
 - [[every student read it]] = λz:D.∀x.(student(x) ⇒ read(x,z))
 - ⑤ [[a book]] = λP.∃y.(book(y) ∧ P(y)) with type VPType → Form.

PUTTING IT TOGETHER

- * [[A book, every student read it]]
 - $= (\lambda P. \exists y. (book(y) \land P(y)))$
 - $(\lambda z:D. \forall x. (student(x) \Rightarrow read(x,z)))$
 - = $\exists y.(book(y) \land (\lambda z:D. \forall x.(student(x) \Rightarrow$
 - read(x,z)))(y)))
 - $= \exists y. (book(y) \land \forall x. (student(x) \Rightarrow read(x,y)))$
- Seems like a trick!

OTHER SOLUTIONS

- Cooper Storage:
 - "Freeze" meanings for quantifiers, pull out when needed. (See book for similar idea)
 - Results in saving multiple meanings.
- Doesn't work with nested noun phrases
 - "Jane read every book of a teacher."
 - * Keller suggested an improvement
- * Hole semantics incorporates constraints
 - Graphical representation representing constraints.

SEMANTIC AMBIGUITY

- More attempted solutions:
 - Quasi-Logical Form, Underspecified Logical Form, Underspecified Discourse Representation Theory, Minimal Recursion Semantics, Ontological Promiscuity, Hole Semantics, the Constraint Language for Lambda Structures, and Normal Dominance Constraints
- Sentences w/N quantifiers have up to N! meanings.
- Desirable to return probability weightings

LOGIC IN NLTK

FORMULAS

- * >>> lp = nltk.sem.LogicParser()
- ** >>> lp.parse(r'(walk x)')
 - ApplicationExpression('walk', 'x')
- ** >>> lp.parse(r'\x.(walk x)')
 - Mathematical Lambda Expression('x', '(walk x)')

BUILDING FORMULAS

- Examples:
 - >>> lp.parse('(and p q)')
 - ApplicationExpression('(and p)', 'q')
- * Allows infix
 - >>> lp.parse('(p and q)')
 - ApplicationExpression('(and p)', 'q')
 - >>> e = lp.parse('(p and (not q))')
 - >>> e
 - ApplicationExpression('(and p)', '(not q)')

FORMATTING

- Examples:
 - >>> print e
 - (and p (not q))
 - >>> print e.infixify()
 - (p and (not q))

USING LAMBDA CALCULUS

- Examples
 - \$ >>> e = lp.parse(r'(\x.((walk x) and (talk x)) john)')
 - >>> 6
 - ApplicationExpression('\x.(and (walk x) (talk x))', 'john')
 - >>> e.simplify()
 - ApplicationExpression('(and (walk john))', '(talk john)')

EMBEDDING FOL

- Examples:
 - >>> lp = nltk.sem.LogicParser(constants= ['dog', 'walk', 'see'])
 - >>> lp.parse(r'dog')
 - ConstantExpression('dog')
 - >>> lp.parse('x')
 - IndVariableExpression('x')

CHARACTERISTIC FUNCTIONS

- ** Build characteristic functions from dicts:
 - >>> called = nltk.sem.CharFun(
 {'bob': nltk.sem.CharFun({'mary':True}),
 - ... 'jane': nltk.sem.CharFun({'mary':True})})
 - ** >>> called['bob']
 - ('mary': True)
 - ** >>> called['bob']['mary']
 - True
 - >>> called['bob']['jane']
 - Traceback (most recent call last):
 - File "<stdin>", line 1, in <module>
 - KeyError: 'jane'

BUILDING CHARACTERISTIC FUNCTIONS

- ****** Build from relations:
 - $\Rightarrow >> cd = set([('bob','mary'),('jane','sally')])$
 - * >>> cf = nltk.sem.CharFun()
 - >>> cf.read(cd)
 - >>> cf
 - * {'sally': {'jane': True}, 'mary': {'bob': True}}

BUILDING A MODEL

- Valuations interpret non-logical symbols:
 - >>> val =

 $nltk.sem. Valuation(\{'JJ':'jane','Tiger':'bob','Mare':'mary', ..., 'boy':\{'bob':True\}, 'called':called\})$

- >>> val['JJ']
 - 'jane'
- >>> val['called']
 - {'jane': {'mary': True}, 'bob': {'mary': True}}

BUILDING A MODEL

* Assignments:

дотаіп of model

* >>> g =

nltk.sem.Assignment(['jane','bob','mary','sally'], {'x':'bob','y':'mary'})

- - \$\ \{'y': 'mary', 'x': 'bob'\}
- ⇒ >>> print g
 - g[mary/y][bob/x]
- >>> g.add('sally','z')
 - \$ {'y': 'mary', 'x': 'bob', 'z': 'sally'}

BUILDING A MODEL

- Model:
 - m = nltk.sem.Model(set(['jane','bob','mary','sally']),val)
 - m.evaluate('some x.((boy x) and (called x Mare))',g)
 - True
 - Searches over domain of model for satisfying assignment -- slow, as keeps going even after it finds it!
 - Warning: Tracing evaluate w/existentials raises exception at runtime!

UNIFICATION BASED APPROACHES

ADDING SEMANTIC FEATURES

- Before associated non-CFG rules to productions:
 - NP → Det Nominal
 - <Det AGREEMENT> = < Nominal AGREEMENT>
 - NP AGREEMENT> = <Nominal AGREEMENT>
- * Want to associate semantics in same way.
- Give up FOL for now to explore use of feature constraints

TWO REPRESENTATIONS

- # [[Jane walked]]
 - = ∃e. Walked(e) ∧ Walker(e,jane)

or

EXAMPLE

- - * <IVerb SEM FORMULA FORMULA1 PRED> = walked

 - <IVerb SEM FORMULA FORMULA2 PRED> = walker
 - <IVerb SEM FORMULA FORMULA2 ARG0> = <IVerb SEM VAR>
 - <IVerb SEM FORMULA FORMULA2 ARG1> = <IVerb ARG0>

Draw picture!

EXAMPLE

- $#VP \rightarrow IVerb$
 - ≪ <VP SEM> = <IVerb SEM>
 - <VP ARG0> = <IVerb ARG0>
- - <PropNoun SEM PRED> = Jane
 - « <PropNoun VAR> = <PropNoun SEM PRED>
- - <NP SEM> = <PropNoun SEM>
 - <NP SCOPE> = <PropNoun SCOPE>
 - <NP VAR> = <PropNoun VAR>

PUT IT ALL TOGETHER ...

- \otimes S \rightarrow NP VP

 - <VP ARG0> = <NP VAR>
 - <NP SCOPE> = <VP SEM>
- Allows one to construct diagrams using unification as hefore
- * Can unify as parse as w/other features

SEMANTICS FOR FRAGMENT OF ENGLISH

BACK TO LOGIC

- Handle declaratives, interrogatives, and imperatives.
- * S \rightarrow NP VP {DCL(NP.Sem(VP.sem))}
- $S \rightarrow VP \{IMP(VP.sem(DummyYou))\}$
- $Aux NP VP \{YNQ(NP.Sem(VP.sem))\}$
- DCL, IMP, YNQ are operators resulting in actions.

OPERATORS

- * DCL
 - add to knowledge base
- * YNQ
 - determine if prop can be inferred from knowledge base - meaning is correct answer
- **₩ IMP**
 - speech act discussed later on dialog

WH-QUESTIONS

- Who ate the candy?
- - * λz:NP. z(VP.Sem) is function taking a NP.
 - Meaning is set of f in NP making fcn true.
- ₩ What did John eat?
- * S \rightarrow WhWord Aux NP VP
 - {WHQ(λο:NP(NP.sem((λx:NP: VP.sem(x))(ο))}
 or {WHQ(ο,NP.sem,VP.sem(x))}

NOUN PHRASES

- Nominal → Noun Nominal
 - * $\{\lambda x. \text{ Nominal.sem}(x) \land \text{NN}(\text{Noun.sem}, x)\}$
 - summer vacation, head start, elephant gun, ...
 - Note that an elephant gun is not an elephant!

ADJECTIVE PHRASES

- # Try:
 - Nominal → Adj Nominal
 - ⋄ Adj \rightarrow red {λP:NounType.λx.P(x) ∧ IsA(x,re∂)} \checkmark
 - ⋄ Adj → small {λP:NounType.λx.P(x) ∧ IsA(x,ωmall)} ⋆
 - $[[small mouse]] = \lambda x. mouse(x) \wedge IsA(x,small)$
 - $[[small elephant]] = \lambda x. elephant(x) \wedge IsA(x,small)$
 - * Others: former friend, fake gun, ...

GENITIVE NOUN PHRASES

- Mary's bike, Mary's friend, Ontario's airport.
 Meaning determined more by noun, not possessive!
- NP → ComplexDet Nominal
- * ComplexDet \rightarrow NP's {NP.sem}
 - * { λ Q:VPType. \exists x. Nominal.sem(x) \wedge GN(x, ComplexDet.sem) \wedge Q(x)}
 - $[[Mary's bike]] = \lambda Q: VPType. (\exists x. bike(x) \land belongs To(bike, Mary) \land Q(x))$

PREPOSITIONAL PHRASES

- Generalize from possessives:
 - Mary's bike
 the bike of Mary
 - $[[house on a hill]]: NounType = D \rightarrow Form$
 - P → on { λ P:NPType. λ Q:NounType. λ x:D. $P(\lambda y. Q(x) \wedge on(x,y))$ }
 - $PP \rightarrow P NP \{P.sem(NP.sem)\}$
 - $Nom \rightarrow Nom PP \{PP.sem(Nom.sem)\}$
- *Different from text!*

SEMANTICS & EARLEY PARSER

- ***** Just like other features
- * No extra problems!

IDIOMS

- # Hard don't make literal sense.
- * Tip of the iceberg, Achilles' heel, ...
- Generally not compositional.
- Must recognize and treat separately

SUMMARY OF SEMANTICS

- Principle of Compositionality key
- * Syntax-driven semantic analysis
- * Use λ -expressions (and other cheats)
- Quantifiers require lambda lifting.

ANY QUESTIONS?