CS 181:
NATURAL LANGUAGE
PROCESSING
Lecture 17: Computational Semantics

K1 M B RUCE
POMONA COLLEGE
SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

SEMANTIC AMBIGUITY

Some ambiguities arise at semantic level

¢ have same parse trees, but different meanings

Every student read a book.
They each picked their own.
% Some liked it, while others did not.

“OBVIOUS” SEMANTICS

[[Every student read a book]]
= [[Every student]] ([[read a book]])

[[Every student]] = AQ.Vx (student(x)=Q(x))
[[read a book]] = As:D. 3y (book(y) A read(s)y))

[[Every student]] ([[read a book]])
= Vx(student(x)=>(\s:D. Ty (book (y) A read(s)y)))(x))
= Vx(tudent(x)=>Ay (book (y) A read(x,y)))

WHAT ABOUT OTHER
MEANING?

% Montague [1973]: Rewrite sentence:
A book, every student read it.
3 “It” creates a hole to be filled:

[[every student read it]] =
Az:D.Vx.(student(x) = read(x,z))

[[a book]] = AP.3y.(book(y) A P(y)) with type
VPType — Form.

PUTTING IT TOGETHER

[[A book, every student read it]]
_ (\P3y.(book(y) A P(y)))
(Az:D.Vx.(student(x) => read(x,z)))
= dy.(book(y) A (Az:D.Vx.(student(x) =
read(x,2))) ()
= dy.(book(y) AVx.(student(x) = read(x,y)))

% Seems like a trick!

OTHER SOLUTIONS

3¢ Cooper Storage:

#¢ “Freeze” meanings for quantifiers, pull out when

needed. (See book for similar idea)

Results in saving multiple meanings.

Doesn’t work with nested noun phrases

Jane read every book of a teacher.”

#¢ Keller suggested an improvement

Hole semantics incorporates constraints

% Graphical representation representing
constraints.

SEMANTIC AMBIGUITY

s More attempted solutions:

Quasi-Logical Form, Underspecified Logical
Form, Underspecified Discourse Representation

Theory, Minimal Recursion Semantics,

Ontological Promiscuity, Hole Semantics, the LOG IC IN N LT K
Constraint Language for Lambda Structures,
and Normal Dominance Constraints

Sentences w/N quantifiers have up to N!
meanings.

Desirable to return probability weightings

FORMULAS BUILDING FORMULAS

Examples:

. % >>> Ip.parse('(and ")
>>> |p = nltk.sem.LogicParser() Ap:lifationéx(pressifo)n(i')(and P 'q)
% >>> Ip.parse(r'(walk x)') s Allows infix

% ApplicationExpression('walk', 'x')

% >>> Ip.parse('(p and q)")

>>> Ip.parse(r’\x.(walk x)') # ApplicationExpression('(and p)', 'q")
% LambdaExpression('x', '(walk x)") ¥ >>> e = Ip-parse((p and (not @))")
% >>>e

% ApplicationExpression('(and p)', '(not q)')

FORMATTING USING LAMBDA CALCULUS

3 Examples
>>> e = |Ip.parse(r'(\x. ((walk x) and (talk x)) john)")

Examples:

a2 >>> pr‘int e 2 s>> e
(and p (not q)) # ApplicationExpression("\x.(and (walk x) (talk x))', 'john")
>>> print e.infixify () # >>> e.simplify()

(p and (not q)) % ApplicationExpression('(and (walk john))', '(talk john)")

EMBEDDING FOL

% Examples:
>>> |p = nltk.sem.LogicParser(constants=
['dog', 'walk', 'see'])
>>> |p.parse(r'dog")
ConstantExpression('dog')
>>> Ip.parse('x")
IndVariableExpression('x')

CHARACTERISTIC FUNCTIONS

2 Build characteristic functions from dicts:

>>> called = nltk.sem.CharFun(
{'bob'": nltk.sem.CharFun({'mary':True}),

jane': nltk.sem.CharFun({'mary":True})})
>>> called['bob']
{'mary": True}
% >>> called['bob']['mary']
% True
>>> called['bob']['jane']

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

i KeyError: 'jane'

BUILDING CHARACTERISTIC
FUNCTIONS

s Build from relations:

>>> cd = set([('bob','mary"),(jane','sally")])
>>> of = nltk.sem.CharFun()

>>> cf.read(cd)

% s>s of

{'sally": {'jane': True}, 'mary": {'bob": True}}

BUILDING A MODEL

Valuations interpret non-logical symbols:

% >>>val =
nltk.sem.Valuation({'JJ"'jane','Tiger":'bob','Mare":'mary’',
..., 'boy":{'bob": True}, 'called":called})

% >>> val['JJ"]
% jane'

>>> val['called']
% {jane': {'mary": True}, 'bob'": {'mary": True}}

BUILDING A MODEL

e ASSignmentS: ()omzzm Qfﬂlﬂ()(’[

2 >>> g =
nltk.sem.Assignment(['jane','bob','mary’, 'sally'],
{'x":'bob','y":'mary'})
W >>> g

{I‘Yl: 'mary‘, x's ‘bob'}

>> print g

% g[mary/y] [bob/x]
>>> g.add(‘sally’,'z")

'

{'y" 'mary', 'x": 'bob!, 'z" 'sally'}

BUILDING A MODEL

3 Model:

m = nltk.sem.Model(set(['jane','bob','mary','sally']),val)

m.evaluate('some x.((boy x) and (called x Mare))',g)

True

i Searches over domain of model for vatisfying avsignment -- slow, as keeps
going even after it finds it!

Warning: Tracing evaluate w/existentials ratses exception at runtime!

UNIFICATION
BASED
APPROACHES

ADDING SEMANTIC FEATURES

3¢ Before associated non-CFG rules to
productions:
3% NP — Det Nominal
<Det AGREEMENTS = < Nominal AGREEMENT>
% <NP AGREEMENTS> = <Nominal AGREEMENT>

s Want to associate semantics In same way.

Give up FOL for now to explore use of
feature constraints

TWO REPRESENTATIONS

% [[Jane walked]]
= de.Walked(e) A Walker (e, jane)

EXAMPLE

s IVerb — walked

<IVerb SEM QUANTS> =3
% <IVerb SEM FORMULA OP> = A
% <IVerb SEM FORMULA FORMULA1 PRED> = walked

<IVerb SEM FORMULA FORMULA1 ARGO> =
<IVerb SEM VAR>

% <IVerb SEM FORMULA FORMULA2 PRED> = walker

* <IVerb SEM FORMULA FORMULA2 ARGO> =
<IVerb SEM VAR>

<IVerb SEM FORMULA FORMULA2 ARGI> =
<IVerb ARGO>

Draw picture!

QUANT 3
VAR @
(@) AND
ORMULALI [PRED walked
ARGO O
FORMULA PRED walker
ORMULA2 § ARGO ©)
RGI1 Jane
EXAMPLE

VP — IVerb
<VP SEM> = <IVerb SEM>
<VP ARGO> = <IVerb ARGO>

% PropNoun — Jane

% <PropNoun SEM PRED> = Jane

<PropNoun VAR> = <PropNoun SEM PRED>
% NP — PropNoun

% <NP SEM> = <PropNoun SEM>

% <NP SCOPE> = <PropNoun SCOPE>

% <NP VAR> = <PropNoun VAR>

PUT IT ALL TOGETHER ...

'S — NP VP
¢ <S Sem> = <NP Sem>

VP ARGO> = <NP VAR>

<NP SCOPE> = <VP SEM>

3¢ Allows one to construct diagrams using unification as
before.

% Can unify as parse as w/other features

SEMANTICS FOR
FRAGMENT OF
ENGLISH

OPERATORS

s DCL
% add to knowledge base
YNQ

determine if prop can be inferred from

knowledge base - meaning is correct answer

IMP

% speech act - discussed later on dialog

BACK TO LOGIC

3¢ Handle declaratives, interrogatives, and

imperatives.

S — NP VP {DCL(NP.Sem(VP.sem))}

S — VP {IMP(VP.sem(DummyYou))}

S — Aux NP VP {YNQ(NP.Sem(VP.sem))}
DCL, IMP, YNQ are operators resulting in

actions.

NOUN PHRASES

Already seen NPType = VPType — Form
3¢ Nominal = Noun Nominal

{Ax. Nominal.sem(x) A NN(Noun.sem, x)}

Note that an elephant gun is not an elephant!

WH-QUESTIONS

Who ate the candy?
3% S —- WhWord VP

{WHQ(WhWord.sem.var,VP.sem)}
% Az:NP. z(VP.Sem) is function taking a NP.
Meaning is set of f in NP making fen true.

2 What did John eat?
3% S — WhWord Aux NP VP

{WHQ(ho:NP(NP.sem ((Ax:NP: VP.sem(x))(0))}
or {WHQ(o,NP.sem,VP.sem(x))}

summer vacation, head start, elephant gun, ...

ADJECTIVE PHRASES

s Try:

% Nominal = Adj Nominal
2 {Ax. Nominal.sem(x) A IsA(x,Adj.sem))
Adj — red {AP:NounType.Ax.P(x) A IsA(x,red)} ¥
Adj — small {AP:NounType.Ax.P(x) A IsA(xumall)} X
2 [[small mouse]] = Ax. mouse(x) A IsA(x,small)

3 [[small elephant]] = Ax. elephant(x) A IsA(x,small)

Others: former friend, fake gun, ...

GENITIVE NOUN PHRASES

% Mary’s bike, Mary’s friend, Ontario’s airport.

Meaning determined more by noun, not possessive!
NP — ComplexDet Nominal
it ComplexDet — NP’s {NP.sem}
s {AQ:VPType. 3x. Nominal.sem(x) A
GN(x, ComplexDet.sem) A Q(x)}
[[Mary's bike]] = AQ:VPType. (Ix. bike(x) A
belongsTo (bike,Mary) A Q(x))

PREPOSITIONAL PHRASES

Generalize from possessives:
% Mary'’s bike = the bike of Mary
3 [[house on a hill]]: NounType = D — Form
P — on {AP:NPType.AQ:NounType. Ax:D.
POy. Q(x) A on(x,y))}
% PP — P NP {Psem(NP.sem)}
% Nom — Nom PP {PP.sem(Nom.sem)}

s Different from text!

SEMANTICS & EARLEY
PARSER

3¢ Just like other features

% No extra problems!

IDIOMS

Hard - don’t make literal sense.
Tip of the iceberg, Achilles’ heel, ..
Generally not compositional.

Must recognize and treat separately

SUMMARY OF SEMANTICS

Principle of Compositionality key
Syntax-driven semantic analysis

Use A-expressions (and other cheats)

Quantifiers require lambda lifting.

ANY QUESTIONS?

