CS 181:
NATURAL LANGUAGE
PROCESSING
Lecture 16: Computational Semantics

K1 M B RUCE
POMONA COLLEGE
SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

SEMANTIC ANALYSIS

From representation to analysis.
Syntax-driven semantic analysis.

From meaning of words to meaning of
g g
phrases and sentences.

2 Assume given]egal parse tree

s Represent meaning of sentence in isolation.

FINDING MEANING

Meaning of sentence will be term of FOL

Meanings of words will be used to build
meaning of sentence.

3¢ Parse tree will determine how to combine
the meanings.

st Express meanings in terms of what is
needed to get a complete sentence.

FINDING MEANING

Verb phrase needs subject in order to get
meaning:
VPType = NPType — Form

¢ Intransitive, transitive, and ditransitive

verbs have different meanings:

2 IVType = VPType

% TVType = NPType — VPType

s DTVType = NPType — NPType — VPType

LAMBDA CALCULUS

Convenient way to write “anonymous”
functions.

Two ways to build (untyped) terms:
(M N) - function application

Ax. M — function definition

Computation rules
(o) Ax. M = Ay. M[y/x] if y not occur in M

% (B) (Ox. M) N) = M[N/x] if N freely
substitutable for x in M

TYPED A-CALCULUS

Specify types of formal parameters:
Ax:T. M

Given assignment I’ of types to free variables,
can derive types of terms.

TU{x:T} = M: U implies I' = Ax:T. M: T — U
#T1-M: T— U, T l~N: TimpliesT' - (M N): U

Typed term M is legal w.r.t I iff there is a
Tst.TI-M:T.

TYPED A\-CALCULUS

s Erasures of all terms of typed A-calculus

are terms of untyped A-calculus, but not

vice-versa.

%Y = M. Ox. f(x x)) (Ax. f(x X))

If no constants, terms of typed A-calculus all
converge to a normal form.
% Halting problemys solvable.

% Can'’t express recursion without adding extra
operators.

OUR A-CALCULUS

Base type Form: formulas of FOL.

% Could use extensions of FOL as needed.

Use typed lambda calculus to provide

intuition!

Can add fixed point operators if necessary.

FINDING MEANING

Verb phrase needs subject in order to get
meaning:

VPType = NPType — Form

2 Intransitive, transitive, and ditransitive
verbs have different meanings:

2 IVType = VPType

% TVType = NPType — VPType

% DTVType = NPType = NPType — VPType

EXAMPLES

s [[walked]] = As:NPType. walked(s)
s [[ate]] = ho: NPType. As:NPType. ate(s,0)

or
ho: NPType. As:NPType. Je. Eating(e) A
Eater(e,s) A Eaten(e,0)

[[threw]] = Ar: NPType. ho: NPType.

As:NPType. Je. Throwing(e) A Thrower(e,s) A
Thrown(e,0) A Receiver(e,r)

Stick wlstmpler non-event representation for now.

MEANING OF NOUN PHRASES

What is NPType?
% Ex: “Jane walked”
% ([[walked]] [[Jane]]) = walked([[Jane]])

so could let [[Jane]] = Jane, a constant.

Let NPType = D, domain of model

NOT soO FAST ...

What about [[All girls walked]]?

3 Vx. (girl(x) = walked(x))

“All girls” is noun phrase.

Calculate meaning as

% (hs:NPType. walked(s)) ([[all girls]]) ?

Can’t get meaning that way!

BACK UP

Mathematicians base everything on sets
Computer Scientists on functions

Replace set SC D by characteristic
function fs: D — Form
3% fs(x) is true in model iff x € S

Binary relation R replaced by
gr: D x D = Form

DETERMINERS

% What 1s [[all girls]]?
AQ: D — Form. Vx. (girl(x) = Q(x))

Notice x ranges over elts of D.

% [[all]] = AP: D = Form. AQ: D — Form.
Vx. (P(x) = Q(x))

% [[exists]] = MP: D — Form. AQ: D — Form.
Ix. (Px) A Q)
Notice NounType = D — Form and
DetType = NounType — NounType'— Form

A-LIFTING

Can represent element d € D by
fa: (D = Form) — Form s.t.:
fa(R) = R(d).

Characterize d extensionally by set of all
properties that hold of it.

NPType = (D — Form) — Form

3 Note |[(D — Form) — Form | >> IDl so lots
of room for NP’s.

VERB PHRASES, REDUX

% [[walked]] = As:D. walked(s) ¢/
IVerbType = VPType = D — Form

s Transitive verbs:
s [[ate a chicken]] = [[ate]]([[a chicken]])
% where [[a chicken]] =
MQ: D—Form. 3x(chicken(x) A Q(x))

[[ate]] = ho: NPType. As:D. ate(s,0) X
% [[ate]] = ho: NPType. As:D. o(Ay: D. ate(s)y)) (4
so TVerbType = NPType— VPType

BACK TO VERB PHRASES

%S — NP VP
% Compute [[S]] = [[NP]]([[VP]]): Form
NPType = (D — Form) — Form

Thus VPType = D — Form,
not NPType — Form
and NPType = VPType — Form

s Fix previous semantics
% DetType = NounType — VPType — Form

TRANSITIVE VERBS

¢ Computing:
s [[ate a chicken]] = [[ate]]([[a chicken]])
= (ho: NPType. As:D. o(Ay: D. ate(s,y))) ([[a chicken]])
= As:D. [[a chicken]](Ay: D. ate(s,y))
= As:D. (AQ: D—Form. Ix(chicken(x) rn Q(x)))
(hy: D. ate(s)y))
= hs:D. Ix(chicken(x) A (hy: D. ate(s,y)) (x))
= As:D. Ix(chicken(x) A ate(s,x))

3% What about ditransitive verbs?
% [[threw]] = Ar: 2. ho: ?. As:D. ... Threw(s,...,..)

TYPES

OF POS

NounType D — Form
VPType D — Form
NounType — VPType
DetType s Form
NPType VPType — Form
PropNounType NPType
IVerbType VPType = D — Form
TVerbType NPType — VPType
NPType — NPType
DTVerbType s VPType

MEANINGS AND GRAMMAR

Assoclate meanings w/production rules:

S—= NP VP

{NP.sem(VP.sem)}

NP — Det Nom

{Det.sem(Nom.sem)}

NP — PropNoun

{PropNoun.sem}

Nom — Noun

{Noun.sem}

VP — IVerb

{IVerb.sem}

VP — TVerb NP

{TVerb.sem(NP.sem)}

LEXICAL SEMANTICS

{AP:NounType.AQ:VPType.
Vx.(P(x) = Q(x)}

Det — every

{AP: NounType.AQ:VPType.

Det — a

Ix.(P(x) A Q(x))}

Noun — chicken

{Ax:D. chicken(x))

PropNoun — Jane

{AP:VPType. P(jane)}

Verb — walked

{Ax:D. walked(x)}

Verb — ate

{Ao: NPType. As:D.

o(Ay: D. ate(s,y))}

SEMANTIC AMBIGUITY

Some ambiguities arise at semantic level

have same parse trees, but different meanings
Every student read a book.

They each picked their own.

% Some liked it, while others did not.

“OBVIOUS” SEMANTICS

[[Every student read a book]]
= [[Every student]] ([[read a book]])

[[Every student]] = AQ.Vx (student (x)=Q(x))
[[read a book]] = As:D. 3y (book(y) A read(s)y))

[[Every student]] ([[read a book]])
= Vx(student(x)=>(\s:D. Ty (book (y) A read(s)y)))(x))
= Vx(tudent(x)=>Ty (book (y) A read(x,y)))

WHAT ABOUT OTHER
MEANING?

2 Montague [1973]: Rewrite sentence:
A book, every student read it.
3 “It” creates a hole to be filled:

[[every student read it]] =
Az:D.Vx.(student(x) = read(x,z))

[[a book]] = AP.3y.(book(y) A P(y)) with type
VPType — Form.

PUTTING IT TOGETHER

[[A book, every student read it]]
_ (\P3y.(book(y) A P(y)))
(Az:D.Vx.(student(x) => read(x,z)))
= dy.(book(y) A (Az:D.Vx.(student(x) =
read(x,2))) ()
= dy.(book(y) AVx.(student(x) = read(x,y)))

% Seems like a trick!

ANY QUESTIONS?

