CS 181: NATURAL LANGUAGE PROCESSING

Lecture 16: Computational Semantics

KIM BRUCE POMONA COLLEGE SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

SEMANTIC ANALYSIS

- From representation to analysis.
- Syntax-driven semantic analysis.
- From meaning of words to meaning of phrases and sentences.
- Assume given legal parse tree
- Represent meaning of sentence in isolation.

FINDING MEANING

- Meaning of sentence will be term of FOL
- Meanings of words will be used to build meaning of sentence.
- Parse tree will determine how to combine the meanings.
- Express meanings in terms of what is needed to get a complete sentence.

FINDING MEANING

- Verb phrase needs subject in order to get meaning:
 - $WPType = NPType \rightarrow Form$
- Intransitive, transitive, and ditransitive verbs have different meanings:
 - IVType = VPType
 - TVType = NPType \rightarrow VPType
 - DTVType = NPType \rightarrow NPType \rightarrow VPType

LAMBDA CALCULUS

- Convenient way to write "anonymous" functions.
- Two ways to build (untyped) terms:
 - (M N) function application
 - * $\lambda x. M$ function definition

Computation rules

- $(\alpha) \lambda x. M = \lambda y. M[y/x]$ if y not occur in M
- (β) (($\lambda x. M$) N) = M[N/x] if N freely substitutable for x in M

Typed λ -calculus

- Specify types of formal parameters:
 - 🏶 λx:T. M
 - Given assignment Γ of types to free variables, can derive types of terms.
 - $\label{eq:generalized_states} \ensuremath{\mathbb{S}} \ \Gamma \cup \{x{:}T\} \mathrel{\buildrel \square} M{:} \ U \ implies \ \Gamma \mathrel{\buildrel \square} \lambda x{:}T. \ M{:} \ T \twoheadrightarrow U$
 - * $\Gamma \models M: T \rightarrow U, \Gamma \models N: T \text{ implies } \Gamma \models (M N): U$

Typed λ -Calculus

- Trasures of all terms of typed λ-calculus are terms of untyped λ-calculus, but not vice-versa.
 - * Y = $\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$
 - If no constants, terms of typed λ-calculus all converge to a normal form.
 Halting problems solvable.
 - Can't express recursion without adding extra operators.

OUR λ -Calculus

- Base type Form: formulas of FOL.Could use extensions of FOL as needed.
- Use typed lambda calculus to provide intuition!
- Can add fixed point operators if necessary.

FINDING MEANING

- Verb phrase needs subject in order to get meaning:
 - $WPType = NPType \rightarrow Form$
- Intransitive, transitive, and ditransitive verbs have different meanings:
 - IVType = VPType
 - * TVType = NPType \rightarrow VPType
 - \circledast DTVType = NPType \twoheadrightarrow NPType \twoheadrightarrow VPType

EXAMPLES

- [[walked]] = λ s:NPType. *walked*(s)
- \$ [[ate]] = λo: NPType. λs:NPType. ate(s,o)
 or

 λ o: NPType. λ s:NPType. \exists e. *Eating*(e) \land *Eater*(e,s) \land *Eater*(e,o)

[[threw]] = λr: NPType. λo: NPType. λs:NPType. ∃e. Throwing(e) ∧ Thrower(e,s) ∧ Thrown(e,o) ∧ Receiver(e,r)

Stick w/simpler non-event representation for now.

MEANING OF NOUN PHRASES

- What is NPType?
 - Ex: "Jane walked"
 - \$ ([[walked]] [[Jane]]) = walked([[Jane]])
 so could let [[Jane]] = Jane, a constant.
 - Let NPType = D, domain of model

NOT SO FAST ...

- What about [[All girls walked]]?
 ∀x.(girl(x) ⇒ walked(x))
- "All girls" is noun phrase.
- Calculate meaning as
 (λs:NPType. *walked*(s))([[all girls]]) ?
- Can't get meaning that way!

BACK UP

- Mathematicians base everything on sets
- Computer Scientists on functions
- Replace set S⊆ D by characteristic function f_S: D → Form
 f_S(x) is true in model iff x ∈ S
- [∞] Binary relation R replaced by $g_R: D \times D \rightarrow Form$

λ -Lifting

- [∞] Can represent element $d \in D$ by $f_d: (D \rightarrow Form) \rightarrow Form s.t.:$ $f_d(R) = R(d).$
- Characterize d extensionally by set of all properties that hold of it.
- $WPType = (D \rightarrow Form) \rightarrow Form$
- * Note $|(D \rightarrow Form) \rightarrow Form | >> |D|$ so lots of room for NP's.

DETERMINERS

- What is [[all girls]]?
 - ≈ λQ: D → Form. ∀x. (*girl*(x) ⇒ Q(x))
 - * Notice x ranges over elts of D.
- $\label{eq:lasticity} \begin{array}{l} & \left[\left[all \right] \right] = \lambda P : D \rightarrow Form. \ \lambda Q : D \rightarrow Form. \\ & \forall x. \ (P(x) \Rightarrow Q(x)) \end{array} \end{array}$
- [[exists]] = λ P: D → Form. λ Q: D → Form. ∃x. (P(x) ∧ Q(x))
- ◎ Notice NounType = D → Form $an\partial$ DetType = NounType → NounType → Form

BACK TO VERB PHRASES

- $S \rightarrow NP VP$
- Compute [[S]] = [[NP]]([[VP]]): Form
- $NPType = (D \rightarrow Form) \rightarrow Form$
- Thus VPType = D → Form, not NPType → Form and NPType = VPType → Form
- ♦ Fix previous semantics
 ♦ DetType = NounType → VPType → Form

VERB PHRASES, REDUX

- ◎ [[walked]] = λs:D. walked(s)
 IVerbType = VPType = D → Form
- Transitive verbs:
 - @ [[ate a chicken]] = [[ate]]([[a chicken]])
 - ** where [[a chicken]] =
 - $\lambda Q: D \rightarrow Form. \exists x(chicken(x) \land Q(x))$
 - * [[ate]] = λο: NPType. λs:D. *ate*(s,o) **X**
 - [∞] [[ate]] = λο: NPType. λs:D. o(λy: D. ate(s,y))

TRANSITIVE VERBS

Computing:

- @ [[ate a chicken]] = [[ate]]([[a chicken]])
 - = (λo: NPType. λs:D. o(λy: D. *ate*(s,y))) ([[a chicken]])
 - = λs:D. [[a chicken]](λy: D. *ate*(s,y))
 - = λ s:D. (λ Q: D \rightarrow Form. \exists x(*chicken*(x) \land Q(x)))
 - $(\lambda y: D. ate(s,y))$
 - $= \lambda s: D. \exists x (chicken(x) \land (\lambda y: D. ate(s,y))(x))$
 - = λ s:D. \exists x(*chicken*(x) \land *ate*(s,x))
- What about ditransitive verbs?
 - * [[threw]] = $\lambda r: ?. \lambda o: ?. \lambda s:D. ... Threw(s,...,.)...$

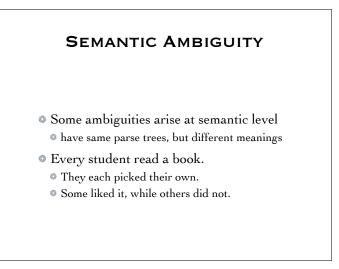
TYPES OF POS		
NounType	$D \rightarrow Form$	
VPType	$D \rightarrow Form$	
DetType	NounType \rightarrow VPType \rightarrow Form	
NPType	VPType → Form	
PropNounType	NPType	
IVerbType	$VPType = D \rightarrow Form$	
TVerbType	$NPType \rightarrow VPType$	
DTVerbType	$\begin{array}{c} \text{NPType} \rightarrow \text{NPType} \\ \rightarrow \text{VPType} \end{array}$	

MEANINGS AND GRAMMAR

Associate meanings w/production rules:

$S \rightarrow NP VP$	{NP.sem(VP.sem)}
$\mathrm{NP} \twoheadrightarrow \mathrm{Det} \ \mathrm{Nom}$	{Det.sem(Nom.sem)}
$NP \rightarrow PropNoun$	{PropNoun.sem}
$\operatorname{Nom} \rightarrow \operatorname{Noun}$	{Noun.sem}
VP → IVerb	{IVerb.sem}
$VP \rightarrow TVerb NP$	{TVerb.sem(NP.sem)}

LEXICAL SEMANTICS		
$Det \rightarrow every$	$ \{ \lambda P: NounType. \lambda Q: VPType. \\ \forall x. (P(x) \Rightarrow Q(x)) \} $	
Det → a	$ \{ \lambda P: NounType. \lambda Q: VPType. \\ \exists x. (P(x) \land Q(x)) \} $	
Noun → chicken	{λx:D. chicken(x)}	
PropNoun → Jane	{λP:VPType. P(jane)}	
Verb → walked	$\{\lambda x: D. walke \partial(x)\}$	
$\operatorname{Verb} \rightarrow \operatorname{ate}$	{λο: NPType. λs:D. ο(λy: D. <i>ate</i> (s,y))}	



"OBVIOUS" SEMANTICS

[[Every student read a book]] = [[Every student]] ([[read a book]])

 $[[Every student]] = \lambda Q. \forall x(\textit{student}(x) \Rightarrow Q(x))$

[[read a book]] = λ s:D. \exists y(book(y) \land rea ∂ (s,y))

[[Every student]] ([[read a book]])

 $= \forall x (student(x) \Rightarrow (\lambda s: D. \exists y (book(y) \land read(s,y)))(x))$

 $= \forall \mathbf{x}(\mathit{student}(\mathbf{x}) {\Rightarrow} \exists \mathbf{y}(\mathit{book}(\mathbf{y}) \land \mathit{read}(\mathbf{x}, \mathbf{y})))$

WHAT ABOUT OTHER MEANING?

- Montague [1973]: Rewrite sentence:A book, every student read it.
- "It" creates a hole to be filled:
 - [[every student read it]] =
 - $\lambda z: D. \forall x. (student(x) \Rightarrow read(x,z))$
 - ◎ [[a book]] = $\lambda P.\exists y.(book(y) \land P(y))$ with type VPType → Form.

PUTTING IT TOGETHER

- [[A book, every student read it]] = $(\lambda P.\exists y.(book(y) \land P(y)))$ $(\lambda z:D.\forall x.(student(x) \Rightarrow read(x,z)))$ = $\exists y.(book(y) \land (\lambda z:D.\forall x.(student(x) \Rightarrow read(x,z)))(y)))$ = $\exists y.(book(y) \land \forall x.(student(x) \Rightarrow read(x,y)))$
- Seems like a trick!

ANY QUESTIONS?