
CS 181:  

Natural Language 

Processing

Lecture 16: Computational Semantics

K i m  B r u c e

P o m o n a  C o l l e g e

S p r i n g  2 0 0 8

Disclaimer: Slide contents borrowed from many sources on web!

Semantic Analysis

From representation to analysis.

Syntax-driven semantic analysis.

From meaning of words to meaning of 
phrases and sentences.

Assume given legal parse tree

Represent meaning of sentence in isolation.

Finding Meaning

Meaning of sentence will be term of FOL

Meanings of words will be used to build 
meaning of sentence.

Parse tree will determine how to combine 
the meanings.

Express meanings in terms of what is 
needed to get a complete sentence.

Finding Meaning

Verb phrase needs subject in order to get 
meaning:

VPType =  NPType ! Form

Intransitive, transitive, and ditransitive 
verbs have different meanings:

IVType = VPType

TVType = NPType ! VPType

DTVType = NPType ! NPType ! VPType

Lambda Calculus

Convenient way to write “anonymous” 
functions.

Two ways to build (untyped) terms:

(M N) – function application

!x. M – function definition

Computation rules

(") !x. M = !y. M[y/x] if y not occur in M

(#) ((!x. M) N) = M[N/x] if N freely 
substitutable for x in M

Typed !-calculus

Specify types of formal parameters:

!x:T. M

Given assignment $ of types to free variables, 
can derive types of terms.

$"{x:T} |– M: U implies $ |– !x:T. M: T ! U

$ |– M: T ! U, $ |– N: T implies $ |– (M N): U

Typed term M is legal w.r.t $ iff there is a 

T s.t. $ |– M: T.



Typed !-Calculus

Erasures of all terms of typed !-calculus 

are terms of untyped !-calculus, but not 
vice-versa.

Y = !f. (!x. f(x x)) (!x. f(x x))

If no constants, terms of typed !-calculus all 
converge to a normal form.  

Halting problems solvable.

Can’t express recursion without adding extra 
operators.

Our !-Calculus

Base type Form:  formulas of FOL.

Could use extensions of FOL as needed.

Use typed lambda calculus to provide 
intuition!

Can add fixed point operators if necessary.

Finding Meaning

Verb phrase needs subject in order to get 
meaning:

VPType =  NPType ! Form

Intransitive, transitive, and ditransitive 
verbs have different meanings:

IVType = VPType

TVType = NPType ! VPType

DTVType = NPType ! NPType ! VPType

Examples

[[walked]] = !s:NPType. walked(s)

[[ate]] = !o: NPType. !s:NPType. ate(s,o)
                   or

!o: NPType. !s:NPType. #e. Eating(e) $ 

Eater(e,s) $ Eaten(e,o)

[[threw]] = !r: NPType. !o: NPType. 

!s:NPType. #e. Throwing(e) $ Thrower(e,s) $ 

Thrown(e,o) $ Receiver(e,r)

Stick w/simpler non-event representation for now.

Meaning of Noun Phrases

What is NPType?

 Ex: “Jane walked”

([[walked]] [[Jane]]) = walked([[Jane]])
so could let [[Jane]] = Jane, a constant.

Let NPType = D, domain of model

Not so Fast ...

What about [[All girls walked]]?

%x.(girl(x) & walked(x))

“All girls” is noun phrase.

Calculate meaning as

(!s:NPType. walked(s))([[all girls]]) ?

Can’t get meaning that way!



Back Up

Mathematicians base everything on sets

Computer Scientists on functions

Replace set S' D by characteristic 

function fS: D ! Form

fS(x) is true in model iff x ( S

Binary relation R replaced by 
gR: D ! D ! Form

!-Lifting

Can represent element d ( D by 

   fd: (D ! Form) ! Form s.t.:

fd(R) = R(d).

Characterize d extensionally by set of all 
properties that hold of it.

NPType = (D ! Form) ! Form

Note |(D ! Form) ! Form | >> |D| so lots 

of room for NP’s.

Determiners

What is [[all girls]]?

!Q: D ! Form. %x. (girl(x) & Q(x))

Notice x ranges over elts of D.

[[all]] = !P: D ! Form. !Q: D ! Form. 
" " " " " " " " " %x. (P(x) & Q(x))

[[exists]] = !P: D ! Form. !Q: D ! Form. 
" " " " " " " " " #x. (P(x) $ Q(x))

Notice NounType = D ! Form and

! DetType = NounType ! NounType ! Form?

Back to Verb Phrases

S ! NP VP

Compute [[S]] = [[NP]]([[VP]]): Form

NPType = (D ! Form) ! Form

Thus VPType = D ! Form, 

" " " " not NPType ! Form

and NPType = VPType ! Form

Fix previous semantics

DetType = NounType ! VPType ! Form

Verb Phrases, Redux

[[walked]] = !s:D. walked(s)  !

IVerbType = VPType = D ! Form

Transitive verbs:

[[ate a chicken]] = [[ate]]([[a chicken]])

where [[a chicken]] = 
" !Q: D!Form. #x(chicken(x) $ Q(x))

[[ate]] = !o: NPType. !s:D. ate(s,o) "

[[ate]] = !o: NPType. !s:D. o(!y: D. ate(s,y))  !

so TVerbType = NPType! VPType

Transitive Verbs

Computing:

[[ate a chicken]] = [[ate]]([[a chicken]])
= (!o: NPType. !s:D. o(!y: D. ate(s,y))) ([[a chicken]])
= !s:D. [[a chicken]](!y: D. ate(s,y))
= !s:D. (!Q: D!Form. #x(chicken(x) $ Q(x)))

" " " " (!y: D. ate(s,y))
= !s:D. #x(chicken(x) $ (!y: D. ate(s,y))(x))

= !s:D. #x(chicken(x) $ ate(s,x))

What about ditransitive verbs?

[[threw]] = !r: ?. !o: ?. !s:D. ...Threw(s,...,..)...



Types of POS

NounType D ! Form

VPType D ! Form

DetType
NounType ! VPType 

! Form

NPType VPType ! Form

PropNounType NPType

IVerbType VPType = D ! Form

TVerbType NPType ! VPType

DTVerbType
NPType ! NPType 

! VPType

Meanings and Grammar

Associate meanings w/production rules:

S ! NP VP {NP.sem(VP.sem)}

NP ! Det Nom {Det.sem(Nom.sem)}

NP ! PropNoun {PropNoun.sem}

Nom ! Noun {Noun.sem}

VP ! IVerb {IVerb.sem}

VP ! TVerb NP {TVerb.sem(NP.sem)}

Lexical Semantics

Det ! every
{!P:NounType.!Q:VPType.

%x.(P(x) & Q(x))}

Det ! a
{!P: NounType.!Q:VPType. 

#x.(P(x) $ Q(x))}

Noun ! chicken {!x:D. chicken(x)}

PropNoun ! Jane {!P:VPType. P(jane)}

Verb ! walked {!x:D. walked(x)}

Verb ! ate
{!o: NPType. !s:D. 

o(!y: D. ate(s,y))}

Semantic Ambiguity

Some ambiguities arise at semantic level

have same parse trees, but different meanings

Every student read a book.

They each picked their own.

Some liked it, while others did not.

“Obvious” Semantics

[[Every student read a book]] 
= [[Every student]] ([[read a book]])

[[Every student]] = !Q.%x(student(x)&Q(x)) 

[[read a book]] = !s:D. #y(book(y) $ read(s,y))

[[Every student]] ([[read a book]])
= %x(student(x)&(!s:D. #y(book(y) $ read(s,y)))(x))
= %x(student(x)&#y(book(y) $ read(x,y)))

What about other 
meaning?

Montague [1973]:  Rewrite sentence:

A book, every student read it.

“It” creates a hole to be filled:

[[every student read it]] = 
" " " " !z:D.%x.(student(x) & read(x,z))

[[a book]] = !P.#y.(book(y) $ P(y)) with type 
VPType ! Form.



Putting it Together

[[A book, every student read it]]  
= (!P.#y.(book(y) $ P(y)))

" " " (!z:D.%x.(student(x) & read(x,z)))

= #y.(book(y) $ (!z:D.%x.(student(x) & 
" " " " " " " " " read(x,z)))(y)))
= #y.(book(y) $%x.(student(x) & read(x,y)))

Seems like a trick!
" " "

Any Questions?


