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SEMANTIC ANALYSIS

# From representation to analysis.
# Syntax-driven semantic analysis.

# From meaning of words to meaning of
g g
phrases and sentences.

2 Assume given ]egal parse tree

s Represent meaning of sentence in isolation.

FINDING MEANING

# Meaning of sentence will be term of FOL

# Meanings of words will be used to build
meaning of sentence.

3¢ Parse tree will determine how to combine
the meanings.

st Express meanings in terms of what is
needed to get a complete sentence.

FINDING MEANING

# Verb phrase needs subject in order to get
meaning:
# VPType = NPType — Form

¢ Intransitive, transitive, and ditransitive

verbs have different meanings:

2 IVType = VPType

% TVType = NPType — VPType

s DTVType = NPType — NPType — VPType

LAMBDA CALCULUS

# Convenient way to write “anonymous”
functions.

# Two ways to build (untyped) terms:
# (M N) - function application

# Ax. M — function definition

# Computation rules
# (o) Ax. M = Ay. M[y/x] if y not occur in M

% (B) (Ox. M) N) = M[N/x] if N freely
substitutable for x in M

TYPED A-CALCULUS

# Specify types of formal parameters:
# Ax:T. M

# Given assignment I’ of types to free variables,
can derive types of terms.

# TU{x:T} = M: U implies I' = Ax:T. M: T — U
#T1-M: T— U, T l~N: TimpliesT' - (M N): U

# Typed term M is legal w.r.t I iff there is a
Tst.TI-M:T.




TYPED A\-CALCULUS

s Erasures of all terms of typed A-calculus

are terms of untyped A-calculus, but not

vice-versa.

%Y = M. Ox. f(x x)) (Ax. f(x X))

# If no constants, terms of typed A-calculus all
converge to a normal form.
% Halting problemys solvable.

% Can'’t express recursion without adding extra
operators.

OUR A-CALCULUS

# Base type Form: formulas of FOL.

% Could use extensions of FOL as needed.

# Use typed lambda calculus to provide

intuition!

# Can add fixed point operators if necessary.

FINDING MEANING

# Verb phrase needs subject in order to get
meaning:

# VPType = NPType — Form

2 Intransitive, transitive, and ditransitive
verbs have different meanings:

2 IVType = VPType

% TVType = NPType — VPType

% DTVType = NPType = NPType — VPType

EXAMPLES

s [[walked]] = As:NPType. walked(s)
s [[ate]] = ho: NPType. As:NPType. ate(s,0)

or
ho: NPType. As:NPType. Je. Eating(e) A
Eater(e,s) A Eaten(e,0)

# [[threw]] = Ar: NPType. ho: NPType.

As:NPType. Je. Throwing(e) A Thrower(e,s) A
Thrown(e,0) A Receiver(e,r)

Stick wlstmpler non-event representation for now.

MEANING OF NOUN PHRASES

# What is NPType?
% Ex: “Jane walked”
% ([[walked]] [[Jane]]) = walked([[Jane]])

so could let [[Jane]] = Jane, a constant.

# Let NPType = D, domain of model

NOT soO FAST ...

# What about [[All girls walked]]?

3 Vx. (girl(x) = walked(x))

# “All girls” is noun phrase.

# Calculate meaning as

% (hs:NPType. walked(s)) ([[all girls]]) ?

# Can’t get meaning that way!




BACK UP

# Mathematicians base everything on sets
# Computer Scientists on functions

# Replace set SC D by characteristic
function fs: D — Form
3% fs(x) is true in model iff x € S

# Binary relation R replaced by
gr: D x D = Form

DETERMINERS

% What 1s [[all girls]]?
AQ: D — Form. Vx. (girl(x) = Q(x))

Notice x ranges over elts of D.

% [[all]] = AP: D = Form. AQ: D — Form.
Vx. (P(x) = Q(x))

% [[exists]] = MP: D — Form. AQ: D — Form.
Ix. (Px) A Q)
# Notice NounType = D — Form and
DetType = NounType — NounType'— Form

A-LIFTING

# Can represent element d € D by
fa: (D = Form) — Form s.t.:
fa(R) = R(d).

# Characterize d extensionally by set of all
properties that hold of it.

# NPType = (D — Form) — Form

3 Note |[(D — Form) — Form | >> IDl so lots
of room for NP’s.

VERB PHRASES, REDUX

% [[walked]] = As:D. walked(s) ¢/
# IVerbType = VPType = D — Form

s Transitive verbs:
s [[ate a chicken]] = [[ate]]([[a chicken]])
% where [[a chicken]] =
MQ: D—Form. 3x(chicken(x) A Q(x))

# [[ate]] = ho: NPType. As:D. ate(s,0) X
% [[ate]] = ho: NPType. As:D. o(Ay: D. ate(s)y)) (4
# so TVerbType = NPType— VPType

BACK TO VERB PHRASES

%S — NP VP
% Compute [[S]] = [[NP]]([[VP]]): Form
# NPType = (D — Form) — Form

# Thus VPType = D — Form,
not NPType — Form
and NPType = VPType — Form

s Fix previous semantics
% DetType = NounType — VPType — Form

TRANSITIVE VERBS

¢ Computing:
s [[ate a chicken]] = [[ate]]([[a chicken]])
= (ho: NPType. As:D. o(Ay: D. ate(s,y))) ([[a chicken]])
= As:D. [[a chicken]](Ay: D. ate(s,y))
= As:D. (AQ: D—Form. Ix(chicken(x) rn Q(x)))
(hy: D. ate(s)y))
= hs:D. Ix(chicken(x) A (hy: D. ate(s,y)) (x))
= As:D. Ix(chicken(x) A ate(s,x))

3% What about ditransitive verbs?
% [[threw]] = Ar: 2. ho: ?. As:D. ... Threw(s,...,.. )




TYPES

OF POS

NounType D — Form
VPType D — Form
NounType — VPType
DetType s Form
NPType VPType — Form
PropNounType NPType
IVerbType VPType = D — Form
TVerbType NPType — VPType
NPType — NPType
DTVerbType s VPType

MEANINGS AND GRAMMAR

# Assoclate meanings w/production rules:

S—= NP VP

{NP.sem(VP.sem)}

NP — Det Nom

{Det.sem(Nom.sem)}

NP — PropNoun

{PropNoun.sem}

Nom — Noun

{Noun.sem}

VP — IVerb

{IVerb.sem}

VP — TVerb NP

{TVerb.sem(NP.sem)}

LEXICAL SEMANTICS

{AP:NounType.AQ:VPType.
Vx.(P(x) = Q(x)}

Det — every

{AP: NounType.AQ:VPType.

Det — a

Ix.(P(x) A Q(x))}

Noun — chicken

{Ax:D. chicken(x))

PropNoun — Jane

{AP:VPType. P(jane)}

Verb — walked

{Ax:D. walked(x)}

Verb — ate

{Ao: NPType. As:D.

o(Ay: D. ate(s,y))}

SEMANTIC AMBIGUITY

# Some ambiguities arise at semantic level

# have same parse trees, but different meanings
# Every student read a book.

# They each picked their own.

% Some liked it, while others did not.

“OBVIOUS” SEMANTICS

[[Every student read a book]]
= [[Every student]] ([[read a book]])

[[Every student]] = AQ.Vx (student (x)=Q(x))
[[read a book]] = As:D. 3y (book(y) A read(s)y))

[[Every student]] ([[read a book]])
= Vx(student(x)=>(\s:D. Ty (book (y) A read(s)y)))(x))
= Vx(tudent(x)=>Ty (book (y) A read(x,y)))

WHAT ABOUT OTHER
MEANING?

2 Montague [1973]: Rewrite sentence:
# A book, every student read it.
3 “It” creates a hole to be filled:

# [[every student read it]] =
Az:D.Vx.(student(x) = read(x,z))

# [[a book]] = AP.3y.(book(y) A P(y)) with type
VPType — Form.




PUTTING IT TOGETHER

# [[A book, every student read it]]
_ (\P3y.(book(y) A P(y)))
(Az:D.Vx.(student(x) => read(x,z)))
= dy.(book(y) A (Az:D.Vx.(student(x) =
read(x,2))) ()
= dy.(book(y) AVx.(student(x) = read(x,y)))

% Seems like a trick!

ANY QUESTIONS?




