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SEMANTICS & DEDUCTION

# Write I = ¢iff for every model M, if M satisfies
every V€T, then M =¢.

s Soundness Theorem: If I" -¢then " =¢
#¢ Completeness Theorem: If " l=¢then I -¢

# Want both to hold so can use deduction in place of
satisfaction.

DEDUCTION

Many formal systems of deduction.

# Deduction system consists of a set of
logical axioms, A, and a set of rules of
inference for deducing a new formula from
old ones.

s Write I I- @ iff there is a sequence ¢y, ...,
®n = ¢ such that each i is a logical axiom,
is in I, or follows from previous members

of the sequence using a deduction rule.

DEFINITIONS

# t is substitutable for x in ¢ iff x does not
get captured by a quantifier in ¢

# A tautology of FOL is a formula obtainable
of propositional logic by replacing each
sentence symbol by a formula of FOL
% A — B — A is tautology of propositional logic
# IxVy.D(xy) = Vx.E(x) = Ix.Vy.D(xy) is a

tautology of FOL.

DEFINITIONS

2 Need to define substitution of terms for
free variables.

3 Define @y'as follows:

# If @ is atomic, obtain @, by replacing all
occurrences of x by t.

# (=)' = ~(Px)
% (PAY)L' = Px'AYyY, and same for v, =

s (Vy.g)t= ) Wy ifx=y
Vy.(o:), if x £y

% ... and same for 3

DEDUCTIVE SYSTEM

# Logical Axioms:

# All tautologies

% Vx. @ = @y, where t is vubstitutable for x in @
# Vx.(p = ¢) = (Vx.90 = Vx. )

% @ — Vx., if x is not free in @.

2 Rule:

% Modus ponens: From ¢, ¢ — 1, deduce 1.




DEDUCTIVE SYSTEMS

# Easy for mathematicians, not so great for
computers.

# Forward chaining may get unnecessary
results.

# Backward chaining may help direct search

DEDUCTIVE SYSTEMS

# Finding contradictions easier:

# To show, @ |-y, show pA-1 yields a
contradiction.

# Resolution theorem proving: Write formulas in
canonical form, use “resolution” (which involves
unification) to deduce new formulas.

PROPERTIES OF FOL

# Axioms and proofs must be decidable in
any useful system.

3¢ Let I be consistent &decidable set of

hypotheses. Then P={ ¢ IT'I-¢ }is
effectively enumerable, but not decidable.

s By contrast, set of statements of FOL true of
natural numbers is not effectively
enumerable.

MULTI-SORTED FOL

s Restrict quantifiers to particular domains.
% Vx:Student. Jy: Chair. isi(x,y)

# Definable if have unary predicates:
% Vx:Student. ¢ = Vx.(Student(x) = $(x))

# Jy: Chair. ¢ = Jy.(Chair(y)r ¢)

# Can be more important with generalized
quantifiers.

EXPRESSIVENESS:
EXTENDING THE REACH

# Not obvious how get expressiveness
needed.
# Going beyond FOL lose important

properties in deduction systems.

CATEGORIES

3% Predicates: Child(x)

# Tallest(y, Child) -- ot legal

# Reify, by making relation an object
# Now more complicated.

Need elt of relation: isA(x,Child)
“ Subset: contains(Child, Person) -- rules




EVENTS

# Can say more about events if reify into an
object.

# Can extract info from event about thematic
roles.

3 Alternatives involve using many-placed predicates
and adding coberence conditions.

% Alternatively add lots of quantifiers, but then
hard to fit [qqe[/zer‘ dlatements.

EXAMPLE

% I threw the ball to Sam

# Iw.ISA(w, Throwing) A
Thrower(w,Speaker) AThrown(w,ball) A

Receiver(w,Sam)

# Add as many roles as like

TIME

# Tenses convey temporal info and may also
refer to them explicitly.

3¢ Differences:

3% I threw the ball

¢ I am throwing the ball
¢ 1 will throw the ball
have thrown the ball
had thrown the ball

EXPLICIT REPRESENTATION

3¢ 1 threw the ball
% F,e,w. ISA(w, Throwing) A Thrown(w,ball) A
IntervalOf (w,i) A EndPt(i,e) A Precedes(e,Now)
# I am throwing the ball
s F,e,w. ISA(w,Throwing) A Thrown(w,ball) A
Interval Of (w,i) A MemberOf(i, Now)
3 I will throw the ball

¢ 31,b,w. ISA(w, Throwing) A Thrown(w,ball) A
Interval Of (w,1) A StartPt(i,b) A Precedes(Now,b)

REICHENBACH

# Keep track of event time, utterance time,
reference time:

Past Perfect Simple Past Present Perfect
I had thrown I threw I have thrown
[ T I I
E R U RE U E R,U
Present Simple Future Future Perfect
I throw I will throw I will have thrown
I I l T o
E,R,U UR E U E R

# Time can also be expressed with modal
operators.

MODAL OPERATORS

3 | believe the basketball team will win.
# The basketball team might win.
% The basketball team must win.

# It is possible that the basketball team will
win.

# It is necessary that the basketball team will
win.




How TO MAKE SENSE OF
MODALS

s Try event-based approach
¢ I believe that the basketball team will win.

# Ju,v.(IsA(u,believing) A IsA(v,winning) A
Believer(u,Speaker) A BelievedProp(u,v) A
Winner (v, the basketball team) A ...)

2% Implies there was a Winning, V.

MODAL OPERATORS

# Extend FOL to add modal operators:
% <I believe>(the basketball team will win)

# <Necessary>(the basketball team will win)

% <Possibility>(the basketball team will win)

# Interpret modal operators as applying over
“possible worlds”.

REFERENTIAL
TRANSPARENCY

# RT: It is possible to replace equals by
equals without changing truth values:
#(3*%7)-2=21-2

# Fails for modal operators:

know batman is Bruce Wayne.
% I know batman is batman.

know that the top student will be valedictorian.

know that Liz Adams will be valedictorian

PROBLEMS IN TRANSLATION

# Many pitfalls in translation
# Say that again and I'll be angry!
s If you are interested, there is a good colloquium
speaker on Thursday.

ALTERNATIVES TO FOL

# Slot-filler representations:

¢ Semantic networks

#¢ Frames
Believing
Believer: Speaker
Winning
Believed:
Winner: BB team

SEMANTIC WEB

“l have a dream for the Web [in which computers]
become capable of analyzing all the data on the Web —
the content, links, and transactions between people and
computers. A ‘Semantic Web’, which should make this
possible, has yet to emerge, but when it does, the day-
to-day mechanisms of trade, bureaucracy and our daily
lives will be handled by machines talking to machines.
The ‘intelligent agents’ people have touted for ages will
finally materialize.”

”

—Tim Berners-Lee, 1999




WHAT’S THE PROBLEM

# Typical web page has rendering info and
links

¢ Semantic content accessible to humans, but
not so easy for computers.

# Can mark up with semantic tags

address, phone number, papers, ...

s but content still inaccessible

ONTOLOGY IN CS

# Specific vocabulary to describe an area
st Explicit assumption on intended meaning
of vocabulary

2 Want it to be formal and machine
manipulable.

SOLUTION?

# Add semantics by

“ Obtaining external agreement on meaning of
annotations. E.g., XML standards within
communities on meanings.

# Problems: inflexible and limited in expressiveness

# Use ontologies to specify meaning of annotations
# Provide ways of building new terms from old
# Formally specify meaning

% Specify relations between terms in multiple ontologies

ONTOLOGY LANGUAGES

# Many based on OO concepts
% Objects / instances / individuals

Types / classes / concepts

% Relations / properties / roles

ONTOLOGY LANGUAGES

# Graphical:

¢ Semantic networks,
UML
# RDF (Resource Description Framework)

# Logic-based:
¢ Description logics (OWL)
# Rules
FOL
Higher-order logics

% Non-classical logics

RDF

s Statements: <subject, predicate, object>
¢ <John, threw, ball>

% Can be representetc/} graphically:
John ball

# Statements represent properties of

resources.

s Resources are objects that can be pointed
to by a URI (properties too!)




RDF

s Objects linked together by properties:

# <ball, isOwnedBy, Mary>
st Everything identified by URI -- not easily
readable by humans.

RDF SCHEMA

# Provides meaning for types and subclass

relations.

# Define vocabulary and relations with other
vocabulary -- specifies meaning

# Examples:

¢ <Person, type, Class>

threw, type, Property>
# <Child, subClassOf, Person>
¢ <John, type, Child>

% <threw, domain, Person> similarly for range

RDF

% Problems:

# No localized range and domain constraints

# No existence or cardinality constraints

# No way to specify transitive, inverses, or
symmetric.

% Desirable features

Extends existing web standards (XML, RDF)

Easy to understand and use

# Formally specified

Expressive

% Automated reasoning possible

OWL

# Based on description logics
Well-defined semantics

# Formal properties well understood (complexity,

decidability)

% Reasoning algorithms

# Optimized implemented systems

OWL CLASS CONSTRUCTORS

s IntersectionOf, UnionOf, ComplementOf,
oneOf, allValuesFrom, someValuesFrom,
maxCardinality, minCardinality

s Example:
# JhasAge.nonNegativeInteger

s represents {x | dy.(x hasAge y) A
y € nonNegativelnteger}

# Define constraints on classes using above
relations.

COMPUTATIONAL
SEMANTICS




SEMANTIC ANALYSIS

# From representation to analysis.
s Syntax-driven semantic analysis.

# From meaning of words to meaning of
g g
phrases and sentences.

2 Assume given ]egal parse tree

# Represent meaning of sentence in isolation.

ANY QUESTIONS?




