DEDUCTION

CS 181:

NATURAL LANGUAGE PROCESSING

Lecture 15: Semantic Representations & Deduction.

KIM BRUCE POMONA COLLEGE SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

Many formal systems of deduction.

- Deduction system consists of a set of logical axioms, Λ, and a set of rules of inference for deducing a new formula from old ones.
- * Write $\Gamma \vdash \phi$ iff there is a sequence $\phi_0, ..., \phi_n = \phi$ such that each ϕ_i is a logical axiom, is in Γ , or follows from previous members of the sequence using a deduction rule.

SEMANTICS & DEDUCTION

- Write $\Gamma \models \phi$ iff for every model M, if M satisfies every $\Upsilon \in \Gamma$, then $M \models \phi$.
- \circledast Soundness Theorem: If $\Gamma \vdash \varphi$ then $\Gamma \vDash \varphi$
- \mathbb{C} Completeness Theorem: If $\Gamma \models \phi$ then $\Gamma \vdash \phi$
- Want both to hold so can use deduction in place of satisfaction.

DEFINITIONS

- Need to define substitution of terms for free variables.
- Define ϕ_x^t as follows:
 - $\label{eq:product} \begin{tabular}{ll} & If ϕ is atomic, obtain $\phi_xt by replacing all occurrences of x by t. \end{tabular}$
 - $\circledast \ (\neg \phi)_x{}^t = \neg (\phi_x{}^t)$
 - $\label{eq:phi} \ensuremath{^{\diamond}} (\phi \wedge \psi)_x{}^t = \phi_x{}^t \wedge \psi_x{}^t \text{, and same for } \lor, \Rightarrow$

$$(\forall y. \phi)_{x}{}^{t} = \begin{cases} \forall y. \phi, \text{ if } x = y \\ \forall y. (\phi_{x}{}^{t}), \text{ if } x \neq y \end{cases}$$

… and same for ∃

DEFINITIONS

- t is substitutable for x in φ iff x does not get captured by a quantifier in φ
- A tautology of FOL is a formula obtainable of propositional logic by replacing each sentence symbol by a formula of FOL
 - $A \rightarrow B \rightarrow A$ is tautology of propositional logic
 - ◎ $\exists x. \forall y. D(x,y) \rightarrow \forall x. E(x) \rightarrow \exists x. \forall y. D(x,y)$ is a tautology of FOL.

DEDUCTIVE SYSTEMS

- Easy for mathematicians, not so great for computers.
- Forward chaining may get unnecessary results.
- Backward chaining may help direct search

DEDUCTIVE SYSTEMS

- Finding contradictions easier:
 - To show, φ |- ψ, show φ^¬ψ yields a contradiction.
 - Resolution theorem proving: Write formulas in canonical form, use "resolution" (which involves unification) to deduce new formulas.

PROPERTIES OF FOL

- Axioms and proofs must be decidable in any useful system.
- * Let Γ be consistent &decidable set of hypotheses. Then P = { $\phi | \Gamma | - \phi$ } is effectively enumerable, but not decidable.
- By contrast, set of statements of FOL true of natural numbers is *not* effectively enumerable.

MULTI-SORTED FOL

- Restrict quantifiers to particular domains.
 ∀x:Student. ∃y: Chair. isi(x,y)
- Definable if have unary predicates:
 - $\label{eq:constraint} & \forall x: Student. \ \varphi = \forall x. (Student(x) \Rightarrow \varphi(x)) \\ \\$
 - * $\exists y: Chair. \phi = \exists y. (Chair(y) \land \phi)$
- Can be more important with generalized quantifiers.

EXPRESSIVENESS: EXTENDING THE REACH

- Not obvious how get expressiveness needed.
- Going beyond FOL lose important properties in deduction systems.

CATEGORIES

- Predicates: Child(x)
- Tallest(y, Child) -- not legal
- Reify, by making relation an object
 - Now more complicated.
 - Need elt of relation: isA(x,Child)
 - Subset: contains(Child, Person) -- rules

EVENTS

- Can say more about events if reify into an object.
- Can extract info from event about thematic roles.
- Alternatives involve using many-placed predicates and adding coherence conditions.
- Alternatively add lots of quantifiers, but then bard to fit together statements.

EXAMPLE

- # I threw the ball to Sam
- Straight Straight
- Add as many roles as like

Тіме

- Tenses convey temporal info and may also refer to them explicitly.
- Differences:
 - I threw the ball
 - I am throwing the ball
 - I will throw the ball
 - I have thrown the ball
 - I had thrown the ball

EXPLICIT REPRESENTATION

- I threw the ball
 - Si,e,w. ISA(w,Throwing) ∧ Thrown(w,ball) ∧ IntervalOf(w,i) ∧ EndPt(i,e) ∧ Precedes(e,Now)
- I am throwing the ball
 - Si,e,w. ISA(w,Throwing) ∧ Thrown(w,ball) ∧ IntervalOf(w,i) ∧ MemberOf(i,Now)
- # I will throw the ball
 - Si,b,w. ISA(w,Throwing) ∧ Thrown(w,ball) ∧ IntervalOf(w,i) ∧ StartPt(i,b) ∧ Precedes(Now,b)

MODAL OPERATORS

- I believe the basketball team will win.
- The basketball team might win.
- The basketball team must win.
- It is possible that the basketball team will win.
- It is necessary that the basketball team will win.

How to Make Sense of Modals

- Try event-based approach
 - I believe that the basketball team will win.
 - Superior States and States an
- Implies there was a winning, v.

MODAL OPERATORS

- Extend FOL to add modal operators:
 - I believe>(the basketball team will win)
 - « <Necessary>(the basketball team will win)
 - Possibility>(the basketball team will win)
- Interpret modal operators as applying over "possible worlds".

REFERENTIAL TRANSPARENCY

- RT: It is possible to replace equals by equals without changing truth values:
 (3 * 7) 2 = 21 2
- Fails for modal operators:
 - I know batman is Bruce Wayne.
 - I know batman is batman.
 - I know that the top student will be valedictorian.
 - I know that Liz Adams will be valedictorian

PROBLEMS IN TRANSLATION

- Many pitfalls in translation
 - Say that again and I'll be angry!
 - If you are interested, there is a good colloquium speaker on Thursday.

ALTERNATIVES TO FOL

Slot-filler representations:

- Semantic networks
- Frames

Believing	
Believer:	Speaker
Believed:	Winning
	Winner: BB team

SEMANTIC WEB

W3C Semantic Web

"I have a dream for the Web [in which computers] become capable of analyzing all the data on the Web – the content, links, and transactions between people and computers. A 'Semantic Web', which should make this possible, has yet to emerge, but when it does, the dayto-day mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to machines. The 'intelligent agents' people have touted for ages will finally materialize."

-Tim Berners-Lee, 1999

WHAT'S THE PROBLEM

- Typical web page has rendering info and links
- Semantic content accessible to humans, but not so easy for computers.
- Can mark up with semantic tags
 address, phone number, papers, ...
 - * but content still inaccessible

SOLUTION?

- Add semantics by
 - Obtaining external agreement on meaning of annotations. E.g., XML standards within communities on meanings.
 - Problems: inflexible and limited in expressiveness
 - Use ontologies to specify meaning of annotations
 - Provide ways of building new terms from old
 - Formally specify meaning
 - Specify relations between terms in multiple ontologies

ONTOLOGY IN CS

- Specific vocabulary to describe an area
- Explicit assumption on intended meaning of vocabulary
- Want it to be formal and machine manipulable.

ONTOLOGY LANGUAGES

- Graphical:
 - Semantic networks,
 - UML
 - RDF (Resource Description Framework)
- & Logic-based:
 - Description logics (OWL)
 - Rules
 - FOL
 - # Higher-order logics
 - Non-classical logics

ONTOLOGY LANGUAGES

- Many based on OO concepts
 - Objects / instances / individuals
 - Types / classes / concepts
 - Relations / properties / roles

RDF

Statements: <subject, predicate, object>
\$\\$
\$\\$
\$John, threw, ball>

- Statements represent properties of resources.
- Resources are objects that can be pointed to by a URI (properties too!)

RDF

- Objects linked together by properties:
 selicity.com
 www.selicity.com"/>www.selicity.com
 wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
- Everything identified by URI -- not easily readable by humans.

RDF SCHEMA

- Provides meaning for types and subclass relations.
- Define vocabulary and relations with other vocabulary -- specifies meaning
- Examples:
 - « <Person, type, Class>
 - <threw, type, Property>
 - Child, subClassOf, Person>
 - Solution
 - <threw, domain, Person> similarly for range

RDF

- Problems:
 - No localized range and domain constraints
 - * No existence or cardinality constraints
 - No way to specify transitive, inverses, or symmetric.

Desirable features

- Extends existing web standards (XML, RDF)
- Easy to understand and use
- Formally specified
- Expressive
- Automated reasoning possible

OWL

- Based on description logics
 - Well-defined semantics
 - Formal properties well understood (complexity, decidability)
 - Reasoning algorithms
 - Optimized implemented systems

OWL CLASS CONSTRUCTORS

- IntersectionOf, UnionOf, ComplementOf, oneOf, allValuesFrom, someValuesFrom, maxCardinality, minCardinality
- Example:
 - \exists hasAge.nonNegativeInteger
 - ◎ represents {x | \exists y.(x hasAge y) ∧ y ∈ nonNegativeInteger}
- Define constraints on classes using above relations.

COMPUTATIONAL SEMANTICS

SEMANTIC ANALYSIS

- $\ensuremath{\circledast}$ From representation to analysis.
- Syntax-driven semantic analysis.
- From meaning of words to meaning of phrases and sentences.
- Assume given legal parse tree
- Represent meaning of sentence in isolation.

ANY QUESTIONS?