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Deduction

Many formal systems of deduction.

Deduction system consists of a set of 

logical axioms, !, and a set of rules of 
inference for deducing a new formula from 
old ones.

Write " |– ! iff there is a sequence !0, ..., 

!n = ! such that each !i is a logical axiom, 

is in ", or follows from previous members 
of the sequence using a deduction rule.

Semantics & Deduction

Write " |= # iff for every model M, if M satisfies 

every " # ", then M |= #.

Soundness Theorem: If  " |– # then " |= #

Completeness Theorem: If  " |= # then " |– #

Want both to hold so can use deduction in place of 
satisfaction.

Definitions

Need to define substitution of terms for 
free variables.

Define !x
t
 as follows:

If ! is atomic, obtain !x
t by replacing all 

occurrences of x by t.

(¬!)x
t = ¬(!x

t)

(!$$)x
t = !x

t$$x
t, and same for %, &

('y.!)x
t = 

... and same for (

'y.!, if x = y

'y.(!x
t), if x % y

)
*
+

Definitions

t is substitutable for x in # iff x does not 

get captured by a quantifier in #

A tautology of FOL is a formula obtainable 
of propositional logic by replacing each 
sentence symbol by a formula of FOL

A , B , A is tautology of propositional logic

(x.'y.D(x,y) , 'x.E(x) , (x.'y.D(x,y) is a 
tautology of FOL.

Deductive System

Logical Axioms:

All tautologies

'x. ! , !x
t, where t is substitutable for x in !

'x.(! , $) , ('x.! , 'x. $)

! , 'x.!, if x is not free in !.

Rule:

Modus ponens: From !, ! , $, deduce $.



Deductive Systems

Easy for mathematicians, not so great for 
computers.

Forward chaining may get unnecessary 
results.

Backward chaining may help direct search

Deductive Systems

Finding contradictions easier:  

To show, ! |– $, show !$¬$ yields a 
contradiction.

Resolution theorem proving:  Write formulas in 
canonical form, use “resolution” (which involves 
unification) to deduce new formulas.

Properties of FOL

Axioms and proofs must be decidable in 
any useful system.

Let " be consistent &decidable set of 

hypotheses.  Then P = { # | " |– # } is 

effectively enumerable, but not decidable.

By contrast, set of statements of FOL true of 

natural numbers is not effectively 

enumerable.

Multi-Sorted FOL

Restrict quantifiers to particular domains.

'x:Student. (y: Chair. isi(x,y)

Definable if have unary predicates:

'x:Student. # - 'x.(Student(x) & #(x))

(y: Chair. # - (y.(Chair(y)$ #)

Can be more important with generalized 
quantifiers.

Expressiveness:

Extending the Reach

Not obvious how get expressiveness 
needed.

Going beyond FOL lose important 
properties in deduction systems.

Categories

Predicates:  Child(x)

Tallest(y, Child) -- not legal

Reify, by making relation an object

Now more complicated.

Need elt of relation:  isA(x,Child)

Subset:  contains(Child, Person) -- rules



Events

Can say more about events if reify into an 
object.

Can extract info from event about thematic 
roles.

Alternatives involve using many-placed predicates 
and adding coherence conditions.  

Alternatively add lots of quantifiers, but then 
hard to fit together statements.

Example

I threw the ball to Sam

(w.ISA(w,Throwing) $ 

Thrower(w,Speaker) $Thrown(w,ball) $ 

Receiver(w,Sam)

Add as many roles as like

Time

Tenses convey temporal info and may also 
refer to them explicitly.

Differences:

I threw the ball

I am throwing the ball

I will throw the ball

I have thrown the ball

I had thrown the ball

Explicit Representation

I threw the ball

(i,e,w. ISA(w,Throwing) $ Thrown(w,ball) $ 
IntervalOf(w,i) $ EndPt(i,e) $ Precedes(e,Now)

I am throwing the ball

(i,e,w. ISA(w,Throwing) $ Thrown(w,ball) $ 
IntervalOf(w,i) $ MemberOf(i,Now)

I will throw the ball

(i,b,w. ISA(w,Throwing) $ Thrown(w,ball) $ 
IntervalOf(w,i) $ StartPt(i,b) $ Precedes(Now,b)

Reichenbach

Keep track of event time, utterance time, 
reference time:

Time can also be expressed with modal 
operators.

Past Perfect                                  Simple Past                           Present Perfect
I had thrown                             I threw                          I have thrown

Present                                   Simple Future                               Future Perfect
I throw                              I will throw                    I will have thrown

E        R      U                     R,E           U                        E                R,U

E,R,U                              U,R         E                      U        E       R

Modal Operators

I believe the basketball team will win.

The basketball team might win.

The basketball team must win.

It is possible that the basketball team will 
win.

It is necessary that the basketball team will 
win.



How to Make Sense of 

Modals

Try event-based approach

I believe that the basketball team will win.

(u,v.(IsA(u,believing) $ IsA(v,winning) $ 
Believer(u,Speaker) $ BelievedProp(u,v) $ 
Winner(v, the basketball team) $ ...)

Implies there was a winning, v.

Modal Operators

Extend FOL to add modal operators:

<I believe>(the basketball team will win)

<Necessary>(the basketball team will win)

<Possibility>(the basketball team will win)

Interpret modal operators as applying over 
“possible worlds”.

Referential 

Transparency

RT:  It is possible to replace equals by 
equals without changing truth values:

(3 * 7) - 2 = 21 - 2

Fails for modal operators:

I know batman is Bruce Wayne.

I know batman is batman.

I know that the top student will be valedictorian.

I know that Liz Adams will be valedictorian

Problems in Translation

Many pitfalls in translation

Say that again and I’ll be angry!

If you are interested, there is a good colloquium 
speaker on Thursday.

Alternatives to FOL

Slot-filler representations:

Semantic networks

Frames

Believing

Believer: Speaker

Believed:
Winning

Winner: BB team

Semantic Web

“I have a dream for the Web [in which computers] 

become capable of analyzing all the data on the Web – 
the content, links, and transactions between people and 
computers. A !Semantic Web", which should make this 
possible, has yet to emerge, but when it does, the day-
to-day mechanisms of trade, bureaucracy and our daily 
lives will be handled by machines talking to machines. 
The !intelligent agents" people have touted for ages will 
finally materialize.”

”

—Tim Berners-Lee, 1999



What’s the Problem

Typical web page has rendering info and 
links

Semantic content accessible to humans, but 
not so easy for computers.

Can mark up with semantic tags

address, phone number, papers, ...

but content still inaccessible

Solution?

Add semantics by 

Obtaining external agreement on meaning of 
annotations.  E.g., XML standards within 
communities on meanings.

Problems:  inflexible and limited in expressiveness

Use ontologies to specify meaning of annotations

Provide ways of building new terms from old

Formally specify meaning

Specify relations between terms in multiple ontologies

Ontology in CS

Specific vocabulary to describe an area

Explicit assumption on intended meaning 
of vocabulary

Want it to be formal and machine 
manipulable.

Ontology Languages

Graphical:

Semantic networks, 

UML

RDF (Resource Description Framework)

Logic-based:

Description logics (OWL)

Rules

FOL

Higher-order logics

Non-classical logics

Ontology Languages

Many based on OO concepts

Objects / instances / individuals

Types / classes / concepts

Relations / properties / roles

RDF

Statements:  <subject, predicate, object>

<John, threw, ball>

Can be represented graphically:

Statements represent properties of 
resources.

Resources are objects that can be pointed 
to by a URI (properties too!)

John ball
threw



RDF

Objects linked together by properties:

<ball, isOwnedBy, Mary>

Everything identified by URI -- not easily 
readable by humans.

RDF Schema

Provides meaning for types and subclass 
relations.

Define vocabulary and relations with other 
vocabulary -- specifies meaning

Examples:

<Person, type, Class>

<threw, type, Property>

<Child, subClassOf, Person>

<John, type, Child>

<threw, domain, Person>  similarly for range

RDF

Problems:

No localized range and domain constraints

No existence or cardinality constraints

No way to specify transitive, inverses, or 
symmetric.

Desirable features

Extends existing web standards (XML, RDF)

Easy to understand and use

Formally specified

Expressive

Automated reasoning possible

OWL

Based on description logics

Well-defined semantics

Formal properties well understood (complexity, 
decidability)

Reasoning algorithms

Optimized implemented systems

OWL Class Constructors

IntersectionOf, UnionOf, ComplementOf, 
oneOf, allValuesFrom, someValuesFrom, 
maxCardinality, minCardinality

Example:

(hasAge.nonNegativeInteger

represents {x | (y.(x hasAge y) $ 
              !! ! y # nonNegativeInteger}

Define constraints on classes using above 
relations.

Computational 

Semantics



Semantic Analysis

From representation to analysis.

Syntax-driven semantic analysis.

From meaning of words to meaning of 
phrases and sentences.

Assume given legal parse tree

Represent meaning of sentence in isolation.

Any Questions?


