
CS 181:  

Natural Language 

Processing

Lecture 14: Semantic Representations

K i m  B r u c e

P o m o n a  C o l l e g e

S p r i n g  2 0 0 8

Disclaimer: Slide contents borrowed from many sources on web!

Types & 

Inheritance

Constraining Features

Each feature structure is labeled by a type. 

Types have appropriateness conditions 

expressing which features are appropriate for it. 

Types organized into hierarchy -- more specific 

types inherit properties of more abstract ones.  

The unification operation is modified to unify the 

types of feature structures in addition to unifying 

the attributes and values.

Types

Simple types:  

Atomic features -- sg, pl, 3rd, ...

Arranged into multiple hierarchies:

Note unification moves down hierarchy!

Is this the best approach?

Complex Types

Specify set of appropriate features

Type restrictions on values of features

Equality constraints between values.

Other Features

Instead of writing:

S ! NP VP
! <NP Head Agreement> = <VP Head Agreement>
! <S Head> = <VP Head>

Could push categories of non-terminals into 
features (next slide)



Unification Parsing

Write:

X ! Y Z
! <X Cat> = S
! <Y Cat> = NP
! <Z Cat> = VP
! <Y Head Agreement> = <Z Head Agreement>
! <X Head> = <Z Head>

Why bother?

Polymorphism

‘and’ and ‘or’ polymorphism

X ! Y ‘and’ Z
! <Y Cat> = <Z Cat>
! <X Cat> = <Y Cat>

Requires revision of parser to look at 
categories rather than non-terminals.

Summary

Feature structures allow us to capture fine-
grained distinctions without multiplying 
our non-terminals.

Constraints express restrictions on 
sentences generated.

Provide fixed values for lexical entries

Other rules have constraints requiring 
unification.

Unification requires sharing.

Semantic 

Analysis

Why semantics

Information retrieval

Some queries simple: 

What is the current Democratic delegate count?

Others are not:

What is the city east of Claremont?

Dialog systems, e.g., as travel agents

Semantic Analysis

How do we represent meanings of 
sentences?

First-order logic (or extensions)

Semantic network (graph)

Conceptual Dependency Graph

Frame-based representation (fill slots)

Worry later about how we compute them.



Programming languages

What is meaning of 3+5*6?

First parse into tree representing 3 + (5 * 6)

Then interpret recursively 
from meanings of nodes

What about 3 + x * 6?

Need to find meaning of x from environment

+

65

*3

Representations

Symbols correspond to objects, properties, 
and relations among objects

True or false in some “state of affairs” or 
model. 

Two points of view:

Meanings of statements that may be true or 
false in model

Set of models in which statement is true.

Ignore context of other statements for now

What do We Need?

Verifiability

Can we answer questions using representation?

Unambiguous representation

Statement may be ambiguous, but better to 
provide several distinct semantic reps than one 
ambiguous one.

A woman in the U.S. has a baby every 15 minutes.

By contrast, vagueness is OK

Canonical form

Identical meanings should have same 
representation, if possible.

What do We Need?

Inference

Can we deduce conclusions from semantic 
representation?

Expressiveness

Can we represent everything necessary?

Prefer syntax-driven construction of meaning 
representations – Principal of Compositionality:

The meaning of a whole is a function of the meanings 
of the parts and of the way they are syntactically 
combined.

Thematic Roles

Verb subcategorization frames enforce 
linking of arguments with their semantic 
roles.

Ex:  NP1 gave NP2 NP3

What are restrictions on each NP?

Giver vs Given vs Receiver

Consider meaning of gave as three-place 
relation gave(x,y,z) w/ restrictions on x, y, and z.

Ex: NP1 was given NP2 by NP3

Prepositions similar: NP1 on NP2.

Thematic Roles

Must support relations with

Semantic labeling of arguments

Semantic constraints on allowable arguments



Meaning

Meaning will be understood as a relation 
between

Semantic representations (e.g., FOL)

State-of-Affairs (SOA) or model providing 
meaning of representations.

Model

Model should represent all relevant info 
about current context

Set(s) of objects -- individual elements

Names of objects

Properties of objects -- unary relations

Relations between objects -- n-ary relations

Vocabulary of 

Representation

Non-logical vocabulary:  Open-ended set 
of names for objects, properties, and 
relations of model.

Logical vocabulary:  Closed set of symbols, 
operators, quantifiers, etc.

Allow us to compose more complex expressions 
from simpler ones.

Model

Model consists of a mapping of all non-
logical symbols to objects, sets and sets of 
tuples of objects of the model.

Logical symbols are used to build up 
meaning of more complex representations 
in the model.

First-Order Logic

Non-logical symbols, L, consist of: 

a finite set of constant names: c1, ..., cn

a finite set of function symbols: f1
 ( n1), ..., fm

(nm)

where f(j) is a function symbol of arity j.

a finite set of relation symbols: R1
(k1), ..., Rm

(km)

where R(j) is a j-ary relation symbol.

Logical symbols:

potentially infinite set of variables: v1, ..., vj, ...

logical connectives: ¬, ", #, $

Quantifiers:  %, &                                                                                                                                                                                                                                                                                                                            

Terms

A term t is one of:

a constant, t = ci.

a variable, t = vj.

a function application, t = fj
(k)(t1, ..., tk) where 

fj
(k) is a k-ary function symbol and t1, ..., tk are 

terms.

Example:  f(3)(g(2)(c, x), y, z)



Formulas

A formula ! is one of:

An atomic formula, ! = Ri
(j)(t1, ..., tj), where Ri

(j) is 
a j-ary relation symbol and t1, ..., tj are terms.

! = ¬", ! = "##, ! = ""#, or ! = "$#, where " 

and # are formulas

! = %x.# or ! = &x.#, where x is a variable and # 
is a formula.

Quantifiers have tighter binding than connectives

Can define scope of variable, bound and free 
variables

FOL Model

A model M for language L is an ordered 
pair <D,F> consisting of a non-empty 
domain, D, and an interpretation function 
F mapping the non-logical symbols of the 
language L to elements of the model, n-ary 
functions, or m-ary relations to match the 
arity of the symbols.

There are also typed models with a 
collection of domains Di.

Assignments

Cannot determine meaning of term or 
assignment unless know meaning of its free 
variables.

g is an assignment in M iff g is a partial 
function from the set of variables to D.

If g is an assignment in M, then if d in D, 
define g[d/x] to be function g’ s.t. for all y 

$ x, g’(y) = g(y), and g(x) = d.

Meaning of Terms

Let % be a term, M = <D,F> be a model, 
and g be an assignment in M whose 

domain includes all variables in %. Define 

the meaning of % by induction as follows:

Mg(c) = F(c).

Mg(x) = g(x).

Mg(f(t1, ..., tn)) = F(f)(Mg(t1), ..., Mg(tn)).

Meaning of Formulas

Let ! be a formula, M = <D,F> be a model, 
and g be an assignment in M whose 

domain includes all variables in !. Define 

the satisfaction of ! by (M,g) by induction:

(M,g) |= (R(t1, ..., tn)) iff 
! ! ! ! (Mg(t1), ..., Mg(tn)) ' F(R).

(M,g) |= " " # iff (M,g) |= " and (M,g) |= #

(M,g) |= " # # iff (M,g) |= " or (M,g) |= #

(M,g) |= ¬" iff not (M,g) |= "

Meaning of Formulas

Let ! be a term, M = <D,F> be a model, 
and g be an assignment in M whose 

domain includes all variables in !. Define 

the satisfaction of ! by (M,g) by induction:

(M,g) |= &x." iff there is an a ' D, 

! ! ! ! ! ! s.t. (M,g[a/x]) |= ".

(M,g) |= %x." iff for all a ' D, (M,g[a/x]) |= ".



Example

Model w/ D = set of students in room and 
the chairs, w/interpretations for 

names, 

awake: D -> boolean

ifo ( D " D

isi ( D " D 

Write sentences and determine which true.

Any Questions?


