CS 181: NATURAL LANGUAGE PROCESSING

Lecture 14: Semantic Representations

KIM BRUCE POMONA COLLEGE SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

TYPES & INHERITANCE

CONSTRAINING FEATURES

- Each feature structure is labeled by a type.
- Types have **appropriateness conditions** expressing which features are appropriate for it.
- Types organized into hierarchy -- more specific types inherit properties of more abstract ones.
- The unification operation is modified to unify the types of feature structures in addition to unifying the attributes and values.

UNIFICATION PARSING

Write:
X → Y Z
X Cat> = S
Y Cat> = NP
Z Cat> = VP
Y Head Agreement> = <Z Head Agreement>
X Head> = <Z Head>

POLYMORPHISM

- and 'or' polymorphism
 X → Y 'and' Z
 <Y Cat> = <Z Cat>
 <X Cat> = <Y Cat>
- Requires revision of parser to look at categories rather than non-terminals.

SUMMARY

- Feature structures allow us to capture finegrained distinctions without multiplying our non-terminals.
- Constraints express restrictions on sentences generated.
 - Provide fixed values for lexical entries
 - Other rules have constraints requiring unification.
- * Unification requires sharing.

SEMANTIC ANALYSIS

WHY SEMANTICS

- Information retrieval
 - Some queries simple:
 - What is the current Democratic delegate count?
 - Others are not:
 - What is the city east of Claremont?
- Dialog systems, e.g., as travel agents

SEMANTIC ANALYSIS

- How do we represent meanings of sentences?
 - First-order logic (or extensions)
 - Semantic network (graph)
 - Conceptual Dependency Graph
 - Frame-based representation (fill slots)
- * Worry later about how we compute them.

PROGRAMMING LANGUAGES

- What is meaning of 3+5*6?
- First parse into tree representing 3 + (5 * 6)

3

5

- Then interpret recursively from meanings of nodes
- What about 3 + x * 6? Need to find meaning of x from environment

REPRESENTATIONS

- Symbols correspond to objects, properties, and relations among objects
- * True or false in some "state of affairs" or model.
- Two points of view:
 - Meanings of statements that may be true or false in model
 - Set of models in which statement is true.
- Ignore context of other statements for now

WHAT DO WE NEED?

- Verifiability
 - Can we answer questions using representation?
- Unambiguous representation
 - Statement may be ambiguous, but better to provide several distinct semantic reps than one ambiguous one.
 - A woman in the U.S. has a baby every 15 minutes.
 - By contrast, vagueness is OK

Canonical form

Identical meanings should have same representation, if possible.

WHAT DO WE NEED?

Inference

- Can we deduce conclusions from semantic representation?
- Expressiveness
 - Can we represent everything necessary?
- * Prefer syntax-driven construction of meaning representations – Principal of Compositionality:

* The meaning of a whole is a function of the meanings of the parts and of the way they are syntactically combined.

THEMATIC ROLES

- Verb subcategorization frames enforce linking of arguments with their semantic roles.
 - Ex: NP₁ gave NP₂ NP₃
 - What are restrictions on each NP?
 - · Giver vs Given vs Receiver
 - Consider meaning of gave as three-place relation gave(x,y,z) w/ restrictions on x, y, and z.
 - Ex: NP₁ was given NP₂ by NP₃
- Prepositions similar: NP1 on NP2.

THEMATIC ROLES

- Must support relations with
 - Semantic labeling of arguments
 - Semantic constraints on allowable arguments

MEANING

- Meaning will be understood as a relation between
 - Semantic representations (e.g., FOL)
 - State-of-Affairs (SOA) or model providing meaning of representations.

MODEL

- Model should represent all relevant info about current context
 - Set(s) of objects -- individual elements
 - Names of objects
 - Properties of objects -- unary relations
 - Relations between objects -- n-ary relations

VOCABULARY OF REPRESENTATION

- Non-logical vocabulary: Open-ended set of names for objects, properties, and relations of model.
- Logical vocabulary: Closed set of symbols, operators, quantifiers, etc.
 - Allow us to compose more complex expressions from simpler ones.

MODEL

- Model consists of a mapping of all nonlogical symbols to objects, sets and sets of tuples of objects of the model.
- Logical symbols are used to build up meaning of more complex representations in the model.

FIRST-ORDER LOGIC

- Non-logical symbols, L, consist of:
 - $\ensuremath{^{\otimes}}$ a finite set of constant names: $c_1,$..., c_n
 - $\hfill a finite set of function symbols: <math display="inline">f_1 \, {}^{(n1)}, \, ..., \, f_m {}^{(nm)}$ where $f^{(j)}$ is a function symbol of arity j.
 - $\hfill a finite set of relation symbols: <math display="inline">R_1^{(k1)}$, ..., $R_m^{(km)}$ where $R^{(j)}$ is a j-ary relation symbol.

Logical symbols:

- \circledast potentially infinite set of variables: v1, ..., vj, ...
- [∞] logical connectives: ¬, ∧, v, \Rightarrow
- Quantifiers: ∀, ∃

TERMS

- A term t is one of:
- $\$ a constant, t = c_i.
- $^{\otimes}$ a variable, t = v_j.
- $^{\odot}$ a function application, $t=f_{j}^{(k)}(t_{1},\,...,\,t_{k})$ where $f_{j}^{(k)}$ is a k-ary function symbol and $t_{1},\,...,\,t_{k}$ are terms.
- * Example: $f^{(3)}(g^{(2)}(c, x), y, z)$

FORMULAS

- A formula ϕ is one of:
 - [®] An atomic formula, $\phi = R_i^{(j)}(t_1, ..., t_j)$, where $R_i^{(j)}$ is a j-ary relation symbol and $t_1, ..., t_j$ are terms.
 - [∞] $φ = \neg ψ$, φ = ψ ∨ θ, φ = ψ ∧ θ, or φ = ψ ⇒ θ, where ψ and θ are formulas
 - $\phi = \forall x.\theta \text{ or } \phi = \exists x.\theta$, where x is a variable and θ is a formula.
 - Quantifiers have tighter binding than connectives
 - Can define scope of variable, bound and free variables

FOL MODEL

- A model M for language L is an ordered pair <D,F> consisting of a non-empty domain, D, and an interpretation function F mapping the non-logical symbols of the language L to elements of the model, n-ary functions, or m-ary relations to match the arity of the symbols.
- There are also typed models with a collection of domains D_i.

ASSIGNMENTS

- Cannot determine meaning of term or assignment unless know meaning of its free variables.
- g is an assignment in M iff g is a partial function from the set of variables to D.
- If g is an assignment in M, then if d in D, define g[d/x] to be function g' s.t. for all y ≠ x, g'(y) = g(y), and g(x) = d.

MEANING OF TERMS

- Let τ be a term, M = <D,F> be a model, and g be an assignment in M whose domain includes all variables in τ. Define the meaning of τ by induction as follows:
 M^g(c) = F(c).
 - $M^{g}(x) = g(x).$

MEANING OF FORMULAS

Let φ be a formula, M = <D,F> be a model, and g be an assignment in M whose domain includes all variables in φ. Define the satisfaction of φ by (M,g) by induction:

 $(M,g) \models (R(t_1, ..., t_n))$ iff

- $(\mathrm{M}^{\mathrm{g}}(\mathrm{t}_{1}), ..., \mathrm{M}^{\mathrm{g}}(\mathrm{t}_{n})) \in \mathrm{F}(\mathrm{R}).$
- ◊ (M,g) ⊨ ψ ∧ θ iff (M,g) ⊨ ψ and (M,g) ⊨ θ
- $(M,g) \models \psi \lor \theta \text{ iff } (M,g) \models \psi \text{ or } (M,g) \models \theta$
- $(M,g) \models \neg \psi \text{ iff not } (M,g) \models \psi$

MEANING OF FORMULAS

Let φ be a term, M = <D,F> be a model, and g be an assignment in M whose domain includes all variables in φ. Define the satisfaction of φ by (M,g) by induction:
(M,g) ⊨∃x.ψ iff there is an a ∈ D, s.t. (M,g[a/x]) ⊨ ψ.

 $(M,g) \models \forall x.\psi \text{ iff for all } a \in D, (M,g[a/x]) \models \psi.$

EXAMPLE

- Model w/ D = set of students in room and the chairs, w/interpretations for
 - 🏶 names,
 - awake: D -> boolean
 - ifo $\subseteq D \times D$
 - isi \subseteq D × D
- Write sentences and determine which true.

ANY QUESTIONS?