CS 181:

NATURAL LANGUAGE PROCESSING

Lecture 12: Statistical Parsing, Features, and Unification.

> KIM BRUCE POMONA COLLEGE SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

PROBLEMS WITH PCFG'S

PROBLEMS WITH STATISTICAL PARSING

- Independence Assumptions:
 Rules assume probabilities for rules same, no matter where they occur.
- * No Lexical Conditioning:
 - Specific words in different subcategories result in different probabilities.

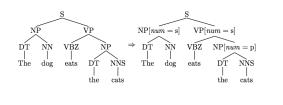
Need to look outside for context, inside for subcategory information!

INDEPENDENCE ASSUMPTIONS

NP's that are

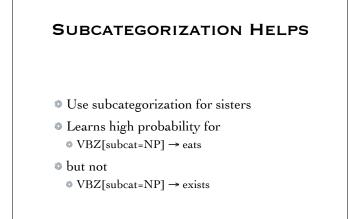
- subjects are pronouns 91% of the time
- objects are pronouns 34% of the time
- Introduce new referents in object, subjects refer to those already introduced.
- overall NP's expand to pronouns 25% of time, and to Det NN 28%
- \circledast Must annotate parents to capture info
- Come back to this ...

LEXICAL DEPENDENCIES


- Prepositional phrase attachment:
 - Attach to object or verb?
 - * John saw the man with the hat.
 - \circledast VP \rightarrow VBD NP, NP \rightarrow NP PP
 - John saw the moon with the telescope.
 VP → VBD NP PP
- How can we tell which is preferred?
- Depends on lexical items, not parts of speech. Annotation key to solution

IMPROVING PCFG's

- Annotate nodes w/ name of parent
 - E.g., NP^S vs NP^VP
 - Ist is subject, 2nd is object
 - Adverbs similar: RB^ADVP vs RB^VP vs. RB^NP.
- Can split in other ways if distinguishing characteristic occurs elsewhere
- Different tagging systems can help problem.


SUBCATEGORIZATION HELPS

- Penn Treebank distinguishes singular/ plural nouns by NN vs NNS and verbs by VBZ vs. VB.
- Propagate up tree

SUBCATEGORIZATION HELPS

- Learns high probability for
 S → NP[num=s] VP[num = s]
- ✤ but not
 - $S \rightarrow NP[num=p] VP[num = s]$
- Won't make much distinction between
 - $WP \rightarrow VP[num=s] NP[num=s]$
 - $W \to VP[num=s] NP[num = p]$

DATA ON RULES & VERBS

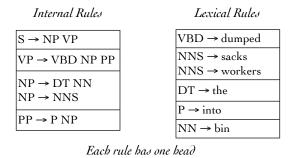
	come	take	think	want
$VP \rightarrow V$	9.5%	2.6%	4.6%	5.7%
$VP \rightarrow V NP$	1.1%	32.1%	0.2%	13.9%
$VP \rightarrow VPP$	34.5%	3.1%	7.1%	0.3%
$VP \rightarrow V SBAR$	6.6%	0.3%	73.0%	0.2%
$VP \rightarrow VS$	2.2%	1.3%	4.8%	70.8%

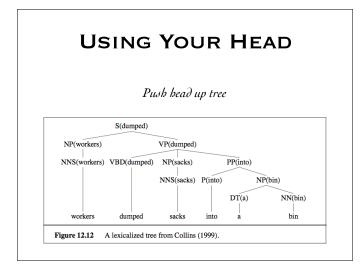
DISADVANTAGES

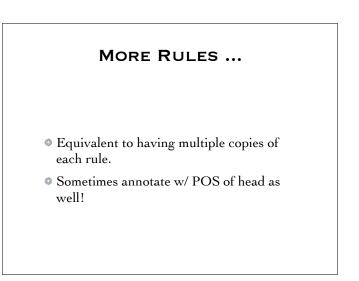
- Increasing #tags increases size of grammar
- Need more training data
- Converting to binary rules may help w/ sparseness issues.
- Petrov et al *split and merge* algorithms is best on Treebank data.

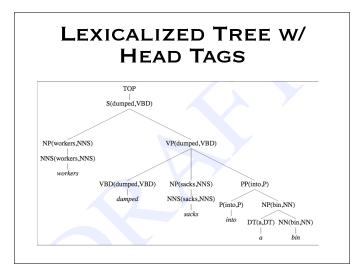
HEAD OF PHRASE

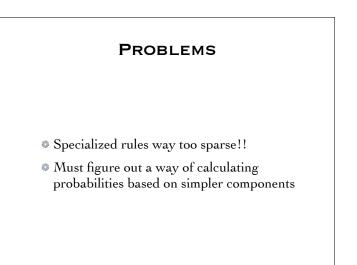
- * Key idea in linguistics
 - X-bar theory, Head-driven phase structure grammar.
- Intuitions (12.4.4)
 - Central subconstituent of rule
 - Grammatically most important
 - Semantic predicate of rule
- * See pg 27 of Chap 12 for rules.


LEXICALIZED CFG'S

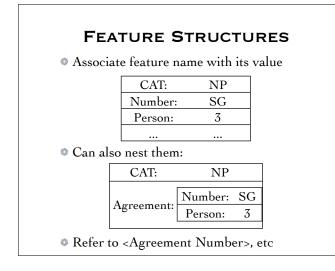

 Annotate tree by lexical heads (key words in phrase)

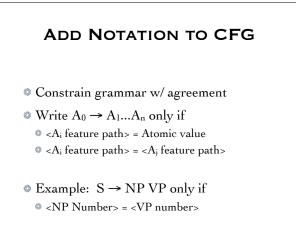

[⊕] P(VP → V NP NP) likelihood depends on verb: gave vs. ran


INDICATING HEADS IN RULES


Add annotations specifying the "head"

EVALUATING PARSERS


EVALUATION


Recall =	# correct labelings
	total # correct labelings in gold std
Precision =	<pre># correct labelings in parse</pre>
	total # constituents in parse
♣ F-score =	$\frac{2PR}{P+R}$
	kets # bracketings which cross ference & hypothetical parses

FEATURES & UNIFICATION

PROLIFERATION OF TAGS

- Do we want 3sgV and other specialized tags?
- Makes sparse data problem worse
- Instead associate properties with tags and require agreement where necessary
 - Nominative/Accusative, gender, tense, singular/ plural, comparative/superlative, ...
- Takes us beyond CFG's.

AGREEMENT

- Subject-Verb agreement
 - \otimes S \rightarrow NP VP only if
 - <NP agreement> = <VP agreement>
 - $\ensuremath{^{\diamond}}$ Takes into account both number and person
 - \gg Aux NP VP only if
 - <NP agreement> = <Aux agreement>
- Determiner-Nominal agreement
 - NP \rightarrow Det Nom iff
 - @ <Det Agreement> = <Nom Agreement>

Assigning Values to Features

- Preterminals features come from lexicon:
- Aux → do
 - Aux Agreement Number> = PL
 - Aux Agreement Person> = 3
- $Aux \rightarrow does$
 - Aux Agreement Number> = SG
 - Aux Agreement Person> = 3
- Det \rightarrow this
 - Aux Agreement Number> = SG
- Det \rightarrow these
- Aux Agreement Number> = PL

USING YOUR HEAD TO MOVE UP THE PARSE TREE

- $With NP \rightarrow \text{Det NOM}$
 - <NP Agreement> = <NOM Agreement>
- Typically, the features copied are from the head of the phrase.

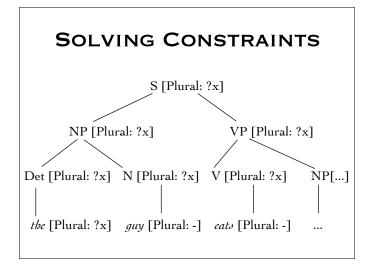
$WP \rightarrow Verb NP$

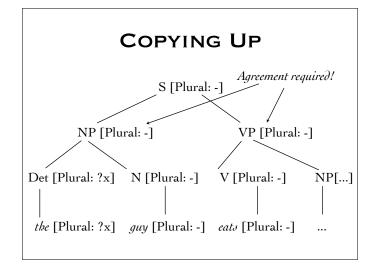
<VP Agreement> = <Verb Agreement>

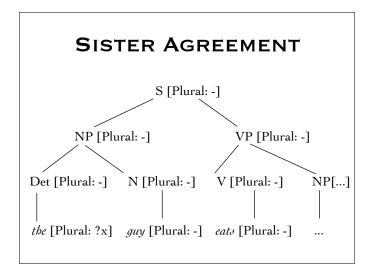
SUBCATEGORIZATION

- Subcategorization labels for verbs can be added as features
- Also move up and down tree
 - Verb \rightarrow hits
 - <Verb Head Agreement Number> = SG
 - Verb Head Subcat> = DITRANS
 - also INTRANS, TRANS, ... as Subcat

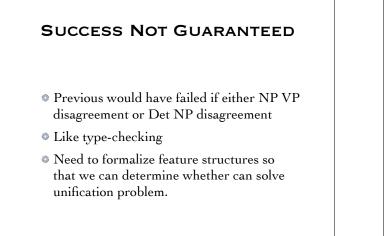
USING SUBCATEGORIZATION

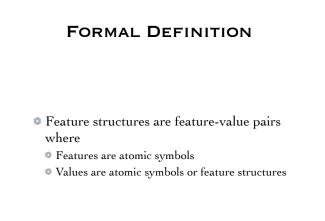

 $WP \rightarrow Verb$

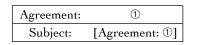

- % <VP Head> = <Verb Head>
- \approx <VP Head Subcat> = INTRANS
- $WP \rightarrow Verb NP$
 - % <VP Head> = <Verb Head>
 - \approx <VP Head Subcat> = TRANS
- $WP \rightarrow Verb NP NP$
 - # <VP Head> = <Verb Head>
 - <VP Head Subcat> = DITRANS


Serves as constraint and for copying up

CONSTRAINT SOLVING


- Features are assigned to members of lexicon (may be ambiguity)
 Sometimes use +,- for feature values
- Project up the tree to be used later
- Used to force agreement with sister nodes
- Walk up and down tree to solve constraints



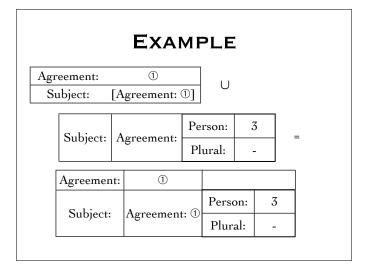


FEATURES FOR WORDS Some feature structures sleep = {[Cat V], [Plural -], [Person 1]} sleep = {[Cat V], [Plural +], [Person 1]} ... sleeps = {[Cat V], [Plural -], [Person 3]}

FEATURE STRUCTURES

- May have shared features
 - Two paths to same value
 - \circledast DAG rather than tree
- In diagrams, indicate replication by shared index for second and later occurrences

OPERATIONS ON FEATURES


- Check consistency
- Merge info in structures
- Unification -- increase information

EXAMPLES

- * Feature combinations:
 - 1. [Agreement: [Plural: -,Person: 1st]]
 - 2. [Agreement: [Plural: -, Nominative: +]]
 - 3. [Agreement: [Plural: -, Person: 3rd]]
- * Unify 1 & 2, 2& 3, but not 1 & 3.

UNIFICATION OF FEATURES

- As discover more about sentence, add new features from different paths -- unification
- Requires same labels have unifiable values
 - Either same or one is specialization of other
 - [Plural: -] is unifiable with [Plural: Null] but not with [Plural: +]
- Write Null in other ways: ?x, ?y, []

SUBSUMPTION

- A less specific (more abstract) feature F subsumes (written ⊆) another feature G iff
 - \circledast For every feature x in F, $F(x) \subseteq G(x)$
 - $^{\otimes}$ For all paths p and q in F such that F(p) = F(q), it is also the case that G(p) = G(q)
- Can add features or fill in more details, but can't change constraints when go to bigger one. *More information. Semilattice*
- \circledast Define F \cup G to be smallest H subsumed by both F and G

ANY QUESTIONS?