
CS 181:

Natural Language

Processing

Lecture 12: Statistical Parsing, Features, and
Unificatio!

K i m B r u c e

P o m o n a C o l l e g e

S p r i n g 2 0 0 8

Disclaimer: Slide contents borrowed from many sources on web!

Problems with

PCFG’s

Problems with Statistical

Parsing

Independence Assumptions:

Rules assume probabilities for rules same, no
matter where they occur.

No Lexical Conditioning:

Specific words in different subcategories result
in different probabilities.

Need to look outside for context,
inside for subcategory information!

Independence

Assumptions

NP’s that are

subjects are pronouns 91% of the time

objects are pronouns 34% of the time

Introduce new referents in object, subjects refer to those
already introduced.

overall NP’s expand to pronouns 25% of time,
and to Det NN 28%

Must annotate parents to capture info

Come back to this ...

Lexical Dependencies

Prepositional phrase attachment:

Attach to object or verb?

John saw the man with the hat.

VP ! VBD NP, NP ! NP PP

John saw the moon with the telescope.

VP ! VBD NP PP

How can we tell which is preferred?

Depends on lexical items, not parts of
speech. Annotation key to solution

Improving PCFG’s

Annotate nodes w/ name of parent

E.g., NP^S vs NP^VP

1st is subject, 2nd is object

Adverbs similar: RB^ADVP vs RB^VP vs.
RB^NP.

Can split in other ways if distinguishing
characteristic occurs elsewhere

Different tagging systems can help
problem.

Subcategorization Helps

Penn Treebank distinguishes singular/
plural nouns by NN vs NNS and verbs by
VBZ vs. VB.

Propagate up tree

Subcategorization Helps

Learns high probability for

S ! NP[num=s] VP[num = s]

but not

S ! NP[num=p] VP[num = s]

Won’t make much distinction between

VP ! VP[num=s] NP[num = s]

VP ! VP[num=s] NP[num = p]

Subcategorization Helps

Use subcategorization for sisters

Learns high probability for

VBZ[subcat=NP] ! eats

but not

VBZ[subcat=NP] ! exists

Data on

Rules & Verbs

come take think want

VP ! V

VP ! V NP

VP ! V PP

VP ! V SBAR

VP ! V S

9.5% 2.6% 4.6% 5.7%

1.1% 32.1% 0.2% 13.9%

34.5% 3.1% 7.1% 0.3%

6.6% 0.3% 73.0% 0.2%

2.2% 1.3% 4.8% 70.8%

Disadvantages

Increasing #tags increases size of grammar

Need more training data

Converting to binary rules may help w/
sparseness issues.

Petrov et al split and merge algorithms is
best on Treebank data.

Head of phrase

Key idea in linguistics

X-bar theory, Head-driven phase structure
grammar.

Intuitions (12.4.4)

Central subconstituent of rule

Grammatically most important

Semantic predicate of rule

See pg 27 of Chap 12 for rules.

Lexicalized CFG’s

Annotate tree by lexical heads (key words
in phrase)

P(VP ! V NP NP) likelihood depends on verb:
gave vs. ran

Indicating Heads in Rules

Add annotations specifying the “head”

S ! NP VP

VP ! VBD NP PP

NP ! DT NN
NP ! NNS

PP ! P NP

VBD ! dumped

NNS ! sacks
NNS ! workers

DT ! the

P ! into

NN ! bin

Each rule has one head

Internal Rules Lexical Rules

Using Your Head

Push head up tree

More Rules ...

Equivalent to having multiple copies of
each rule.

Sometimes annotate w/ POS of head as
well!

Lexicalized Tree w/

Head Tags
Problems

Specialized rules way too sparse!!

Must figure out a way of calculating
probabilities based on simpler components

Evaluating

Parsers

Evaluation

Recall =

Precision =

F-score =

Cross-brackets # bracketings which cross
between reference & hypothetical parses

correct labelings
––––––––––––––––––––––
total # correct labelings in gold std

correct labelings in parse
––––––––––––––––––––––
total # constituents in parse

2PR

P + R

Features &

Unification

Proliferation of Tags

Do we want 3sgV and other specialized
tags?

Makes sparse data problem worse

Instead associate properties with tags and
require agreement where necessary

Nominative/Accusative, gender, tense, singular/
plural, comparative/superlative, ...

Takes us beyond CFG’s.

Feature Structures

Associate feature name with its value

Can also nest them:

Refer to <Agreement Number>, etc

CAT: NP

Number: SG

Person: 3

... ...

CAT: NP

Agreement:
Number: SG

Person: 3

Add Notation to CFG

Constrain grammar w/ agreement

Write A0 ! A1...An only if

<Ai feature path> = Atomic value

<Ai feature path> = <Aj feature path>

Example: S ! NP VP only if

<NP Number> = <VP number>

Agreement

Subject-Verb agreement

S ! NP VP only if

<NP agreement> = <VP agreement>

Takes into account both number and person

S ! Aux NP VP only if

<NP agreement> = <Aux agreement>

Determiner-Nominal agreement

NP ! Det Nom iff

<Det Agreement> = <Nom Agreement>

Assigning Values to

Features

Preterminals features come from lexicon:

Aux ! do

<Aux Agreement Number> = PL

<Aux Agreement Person> = 3

Aux ! does

<Aux Agreement Number> = SG

<Aux Agreement Person> = 3

Det ! this

<Aux Agreement Number> = SG

Det ! these

<Aux Agreement Number> = PL

Using your Head to Move

Up the Parse Tree

NP ! Det NOM

<NP Agreement> = <NOM Agreement>

Typically, the features copied are from the
head of the phrase.

VP ! Verb NP

<VP Agreement> = <Verb Agreement>

Subcategorization

Subcategorization labels for verbs can be
added as features

Also move up and down tree

Verb ! hits

<Verb Head Agreement Number> = SG

<Verb Head Subcat> = DITRANS

also INTRANS, TRANS, ... as Subcat

Using Subcategorization

VP ! Verb

<VP Head> = <Verb Head>

<VP Head Subcat> = INTRANS

VP ! Verb NP

<VP Head> = <Verb Head>

<VP Head Subcat> = TRANS

VP ! Verb NP NP

<VP Head> = <Verb Head>

<VP Head Subcat> = DITRANS

Serves as constraint and for copying up

Constraint Solving

Features are assigned to members of
lexicon (may be ambiguity)

Sometimes use +,- for feature values

Project up the tree to be used later

Used to force agreement with sister nodes

Walk up and down tree to solve constraints

S [Plural: ?x]

N [Plural: ?x]Det [Plural: ?x]

VP [Plural: ?x]NP [Plural: ?x]

guy [Plural: -]the [Plural: ?x]

V [Plural: ?x] NP[...]

eats [Plural: -] ...

Solving Constraints

S [Plural: -]

N [Plural: -]Det [Plural: ?x]

VP [Plural: -]NP [Plural: -]

guy [Plural: -]the [Plural: ?x]

V [Plural: -] NP[...]

eats [Plural: -] ...

Copying Up

Agreement required!

S [Plural: -]

N [Plural: -]Det [Plural: -]

VP [Plural: -]NP [Plural: -]

guy [Plural: -]the [Plural: ?x]

V [Plural: -] NP[...]

eats [Plural: -] ...

Sister Agreement

S [Plural: -]

N [Plural: -]Det [Plural: -]

VP [Plural: -]NP [Plural: -]

guy [Plural: -]the [Plural: -]

V [Plural: -] NP[...]

eats [Plural: -] ...

Copying Down

Success Not Guaranteed

Previous would have failed if either NP VP
disagreement or Det NP disagreement

Like type-checking

Need to formalize feature structures so
that we can determine whether can solve
unification problem.

Formal Definition

Feature structures are feature-value pairs
where

Features are atomic symbols

Values are atomic symbols or feature structures

Features for Words

Some feature structures

sleep = {[Cat V], [Plural -], [Person 1]}

sleep = {[Cat V], [Plural +], [Person 1]}

...

sleeps = {[Cat V], [Plural -], [Person 3]}

Feature Structures

May have shared features

Two paths to same value

DAG rather than tree

In diagrams, indicate replication by shared
index for second and later occurrences

Agreement: !

Subject: [Agreement: !]

Operations on Features

Check consistency

Merge info in structures

Unification -- increase information

Examples

Feature combinations:

1. [Agreement: [Plural: -,Person: 1st]]

2. [Agreement: [Plural: -, Nominative: +]]

3. [Agreement: [Plural: -, Person: 3rd]]

Unify 1 & 2, 2& 3, but not 1 & 3.

Unification of Features

As discover more about sentence, add new
features from different paths -- unification

Requires same labels have unifiable values

Either same or one is specialization of other

[Plural: -] is unifiable with [Plural: Null]
but not with [Plural: +]

Write Null in other ways: ?x, ?y, []

Example

Agreement: !

Subject: [Agreement: !]
"

Subject: Agreement:
Person: 3

Plural: -
=

Agreement: !

Subject: Agreement: !
Person: 3

Plural: -

Subsumption

A less specific (more abstract) feature F
subsumes (written #) another feature G iff

For every feature x in F, F(x) # G(x)

For all paths p and q in F such that F(p) = F(q),
it is also the case that G(p) = G(q)

Can add features or fill in more details, but
can’t change constraints when go to bigger
one. More information. Semilattice

Define F " G to be smallest H subsumed

by both F and G

Any Questions?

