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Disclaimer: Slide contents borrowed from many sources on web!

CYK in Python

from Bird

Using NLTK w/CYK

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

grammar = nltk.parse_cfg(""" 
            S -> NP VP 
            PP -> P NP 
            NP -> Det N | NP PP 
            VP -> V NP | VP PP 
            Det -> 'the' 
            N -> 'kids' | 'box' | 'floor' 
            V -> 'opened' 
            P -> 'on'
        """)

Following assumes no ambiguity!

Initialize Table

def init_wfst(tokens, grammar): 
! numtokens = len(tokens) 

! # fill w/ dots
! wfst = [["." for i in range(numtokens+1)] 
! ! ! ! ! ! ! for j in ! range(numtokens+1)]
 
! # fill in diagonal
! for i in range(numtokens): 
! ! productions = grammar.productions(rhs=tokens[i]) 
! ! wfst[i][i+1] = productions[0].lhs() 
! return wfst 

Fill In Table

def complete_wfst(wfst, tokens, trace=False): 
    index = {} 
    for prod in grammar.productions(): #make reverse lookup
        index[prod.rhs()] = prod.lhs() 
    numtokens = len(tokens) 
    for span in range(2, numtokens+1): 
        for start in range(numtokens+1-span):  #go down diagonal
            end = start + span 
            for mid in range(start+1, end): 
                nt1, nt2 = wfst[start][mid], wfst[mid][end] 
                if (nt1,nt2) in index: 
                    if trace: 
                        print "[%s] %3s [%s] %3s [%s] ==> [%s] %3s [%s]" % \
                        (start, nt1, mid, nt2, end, start, index[(nt1,nt2)], end) 
                    wfst[start][end] = index[(nt1,nt2)] 
    return wfst 

Display Table

def display(wfst, tokens): 
    print '\nWFST ' + ' '.join([("%-4d" % i) for i in range(1, len(wfst))]) 
    for i in range(len(wfst)-1): 
        print "%d " % i, 
        for j in range(1, len(wfst)): 
            print "%-4s" % wfst[i][j], 
        print 



Results

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

>>> wfst0 = init_wfst(tokens, grammar) 
>>> display(wfst0, tokens)

WFST 1    2    3    4    5    6    7    8   
0  Det  .    .    .    .    .    .    .   
1  .    N    .    .    .    .    .    .   
2  .    .    V    .    .    .    .    .   
3  .    .    .    Det  .    .    .    .   
4  .    .    .    .    N    .    .    .   
5  .    .    .    .    .    P    .    .   
6  .    .    .    .    .    .    Det  .   
7  .    .    .    .    .    .    .    N   

Results

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

>>> wfst1 = complete_wfst(wfst0,tokens)
>>> display(wfst1, tokens)

WFST 1    2    3    4    5    6    7    8   

0  Det  NP   .    .    S    .    .    S   

1  .    N    .    .    .    .    .    .   

2  .    .    V    .    VP   .    .    VP  

3  .    .    .    Det  NP   .    .    NP  

4  .    .    .    .    N    .    .    .   

5  .    .    .    .    .    P    .    PP  

6  .    .    .    .    .    .    Det  NP  

7  .    .    .    .    .    .    .    N   

With Tracing

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

>>> wfst2 = 

complete_wfst(wfst0,tokens,trace=True)

[0] Det [1]   N [2] ==> [0]  NP [2]

[3] Det [4]   N [5] ==> [3]  NP [5]

[6] Det [7]   N [8] ==> [6]  NP [8]

[2]   V [3]  NP [5] ==> [2]  VP [5]

[5]   P [6]  NP [8] ==> [5]  PP [8]

[0]  NP [2]  VP [5] ==> [0]   S [5]

[3]  NP [5]  PP [8] ==> [3]  NP [8]

[2]   V [3]  NP [8] ==> [2]  VP [8]

[2]  VP [5]  PP [8] ==> [2]  VP [8]

[0]  NP [2]  VP [8] ==> [0]   S [8]  

Earley 

Algorithm

Earley Algorithm

Top-down

Does not require CNF, handles left-
recursion.

Proceeds left-to-right filling in a chart

States contain 3 pieces of info:

Grammar rule

Progress made in recognizing it

Position of subtree in input string

Parse Table

As before, columns correspond to gaps

Entry in column n of the form

A ! u.v, k

Means predicting that we’ll use rule A ! u v, 
and so far have verified u in input matches 
section of input [k,n]

Ex:  0 Book 1 that 2 flight 3
NP ! Det.Nom,1 in column 2 means have 
recognized “that” (word[1,2]) is Det and hope 
to show Nom occurs later



Add ROOT ! . S to column 0. 

 For each j from 0 to n: 

For each dotted rule in column j, 
           (including those added as we go!) 

look at what’s after the dot: 

• If it’s a word w, SCAN: 

– If w matches the input word between j and j+1, 
advance the dot and add the new rule to column j+1 

• If it’s a non-terminal X, PREDICT: 

– Add all rules for X to the bottom of column j, with 
the dot at the start: e.g. X ! . Y Z 

• If there’s nothing after the dot, ATTACH: 

– We’ve finished some constituent, A, that started in 
column i<j. So for each rule in column  j that has A 
after the dot: Advance the dot and add the result to 
the bottom of column j. 

Return true if last column has ROOT ! S .

Earley Algorithm
Idea of Algorithm

Process all hypotheses in order

May add new hypotheses (or try to add old)

Process according to what after dot

if word, scan and see if matches

if non-terminal, predict ways to match

if want, can be smart and peek ahead to reduce possibilities

if at end, have complete constituent and attach to 
those that need it.

Example

S ! NP VP VP ! Verb

S ! Aux NP VP VP ! Verb NP

S ! VP Det ! that | this | a | the

NP ! Det NOM Noun ! book | flight | meal | man

NOM ! Noun Verb ! book | include | read

NOM ! Noun NOM Aux ! does

Book that flight!

Earley Example

ROOT!.S, 0 

S ! .NP VP, 0

S ! .Aux NP VP, 0

S ! .VP, 0

NP ! . Det Nom, 0

VP ! . Verb, 0

VP ! . Verb NP, 0

3 
predictions 

for S

chart[0]

!

!

! because book is not Aux or Det

book

Earley Example

ROOT!.S, 0 Verb ! book ., 0

S ! .NP VP, 0 VP ! Verb ., 0

S ! .Aux NP VP, 0 VP ! Verb . NP, 0

S ! .VP, 0 S ! VP ., 0

NP ! . Det Nom, 0 NP ! . Det Nom, 1

VP ! . Verb, 0

VP ! . Verb NP, 0

chart[0] chart[1]

Scanner

Completer

Completer

book that

Earley Example

ROOT!.S, 0 Verb ! book ., 0 Det ! that ., 1

S ! .NP VP, 0 VP ! Verb ., 0 NP ! Det . NOM, 1

S ! .Aux NP VP, 0 VP ! Verb . NP, 0 NOM ! . Noun, 2

S ! .VP, 0 S ! VP ., 0 NOM ! . Noun NOM, 2

NP ! . Det NOM, 0 NP ! . Det NOM, 1

VP ! . Verb, 0

VP ! . Verb NP, 0

chart[0] chart[1] chart[2]
book that flight



Earley Example

ROOT!.S, 0 Verb ! book ., 0 Det ! that ., 1 Noun ! flight., 2

S ! .NP VP, 0 VP ! Verb ., 0 NP ! Det . NOM, 1 NOM ! Noun ., 2

S ! .Aux NP VP, 0 VP ! Verb . NP, 0 NOM ! . Noun, 2 NOM ! Noun . NOM, 2

S ! .VP, 0 S ! VP ., 0 NOM ! . Noun NOM, 2 NP ! Det NOM ., 1

NP ! . Det NOM, 0 NP ! . Det NOM, 1 VP ! Verb NP ., 0

VP ! . Verb, 0 S ! VP ., 0

VP ! . Verb NP, 0 NOM ! ..., 3

chart[0] chart[1] chart[2] chart[3]

"

book that flight

Size of table is n*nG

Processing one cell might require search 
previous chart and check for dups.

Total O(G2n3)

Complexity

Using NLTK to 

Parse

Using NLTK

import  nltk

grammar = nltk.parse_cfg(''' 
    NP -> NNS | JJ NNS | NP CC NP 
    NNS -> "men" | "women" | "children" | NNS CC NNS 
    JJ -> "old" | "young" 
    CC -> "and" | "or" 
    ''') 

parser = nltk.ChartParser(grammar, nltk.parse.BU_STRATEGY) 

Also TD_STRATEGY

Using NLTK

>>> sent = 'old men and women'.split()
>>> for tree in parser.nbest_parse(sent):
...        print tree

(NP (JJ old) (NNS (NNS men) (CC and) (NNS women)))
(NP (NP (JJ old) (NNS men)) (CC and) (NP (NNS women)))

Statistical 

Parsing



Why Use Probabilities In 

Parsing?

Disambiguation

Language modeling -- fix errors

Use probabilistic CFGs

Using probabilities

Assign probabilities to parse trees

by assigning probabilities to rules

Will allow us to compare different parses 
to pick most likely.

Often need external context as well ...

More later

Need good dictionary w/parts of speech

Assign probabilities

Attach probabilities to rules

Represent probability of using rule, given 
already have LHS.

Rules from given LHS must add up to 1

VP ! Verb               .55

VP ! Verb NP         .40

VP ! Verb NP NP  .05

Computing Probabilities

Compute probability of tree by multiplying 
probabilities of rules used.

Probability of sentence if sum of 
probabilities of all of its parse trees.

Can read sentence off of parse tree.

Sum of probabilities of all grammatical 
sentences should add up to 1 to have a 
consistent grammar

Problems:  S ! SS, S ! a

Disambiguating Sentences

Choose the parse tree with highest 
probability to disambiguate sentence.

Just a first approximation!

Probabilistic CYK

function PCKY_Parse(words, grammar)

   n " length(words)

   for w " 1 to n do

      table[w-1,w] " {A | A ! words[w] # grammar}

      for start " 0 to n-w do  # start is row

         end " start + w           # end is column

         for mid " start+1 to end-1

             for every X in table[start,mid]

                 for every Y in table[mid,end]

                     for all B s.t B ! X Y # grammar

                         add B, prob to table[start,end]



add B, prob to table[start,end]

for every X in table[start,mid]

     for every Y in table[mid,end]

          for all B s.t B ! X Y # grammar

               add B to table[start,end] with probability p

                       where px = P(X) from table[start,mid]

                                  py = P(Y) from table[mid,end]

                                  pb = P(B ! X Y)

                                  pr = px * py * pb

                       if B not in table[start,end]

                           p = pr

                      else 

                           p = max(pr,p for B in table[start,end]

Probabilistic Parses

Notice only need to keep at each node, 
parse tree for B w/max. probability if only 
want most likely parse.

If want probability of all, then have to add 
each of them to table and keep track of 
probabilities.

Getting Probabilities of 

Rules

If possible, use an annotated database 
(treebank)

Penn Treebank has ~ 1.6 million words

Available in other languages as well

Collect count for each rule expansion and 
normalize:

P (α→ β|α) =
Count(α→ β)∑
γ Count(α→ γ)

Learning Probabilities

What if don’t have one for kind of corpus?

Take large collection of text and parse.

If ambiguous, keep all possible parses

Guess relative probabilities for ambiguous

Continue as with treebank

How???

Learn by approximations

Need probabilistic parser to assign 
probabilities to ambiguous parses!

Most sentences are ambiguous!!

One technique:

Start w/ all same probability

Compute new probability for each parse

repeat ...

PCFG’s in NLTK



Using NLTK

import  nltk

grammar = nltk.parse_pcfg(''' 
    NP -> NNS [0.5] | JJ NNS [0.3] | NP CC NP [0.2] 
    NNS -> "men" [0.1] | "women" [0.2] | "children" [0.3] | NNS CC NNS [0.4] 
    JJ -> "old" [0.4] | "young" [0.6] 
    CC -> "and" [0.9] | "or" [0.1]
    ''') 

viterbi_parser = nltk.ViterbiParser(grammar) 

>>> sent = 'old men and women'.split()
>>> print viterbi_parser.parse(sent)
(NP (JJ old) (NNS (NNS men) (CC and) (NNS women))) (p=0.000864)

Any Questions?


