Cs 181:
NATURAL LANGUAGE
PROCESSING
Lecture 11: Earley Parsing, Statistical Parsing

K1 M B RUCE
POMONA COLLEGE
SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

CYK IN PYTHON
FROM BIRD

UsSING NLTK w/CYK

Following assumes no ambiguity!

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

grammar = nltk.parse_cfg("™"
S ->NP VP
PP -> P NP
NP ->Det N | NP PP
VP ->V NP | VP PP
Det -> 'the'
N -> 'kids' | 'box'| 'floor
V -> 'opened'
P ->'on'

unu)

INITIALIZE TABLE

def init_wfst(tokens, grammar):
numtokens = len(tokens)

fill w/ dots
wfst = [['.” for i in range(numtokens+1)]
forjin range(numtokens+1)]

fill in diagonal

for i in range(numtokens):
productions = grammar.productions(rhs=tokensi])
wist[i][i+1] = productions[0].lhs()

return wfst

FILL IN TABLE

def complete_wfst(wfst, tokens, trace=False):
index = {}
for prod in grammar.productions(): #make reverse lookup
index[prod.rhs()] = prod.lhs()
numtokens = len(tokens)
for span in range(2, numtokens+1):
for start in range(numtokens+1-span): #go down diagonal
end = start + span
for mid in range(start+1, end):
nt1, nt2 = wfst[start][mid], wfst[mid][end]
if (nt1,nt2) in index:
if trace:
print "[%s] %3s [%S] %3s [%S] ==> [%S] %3s [%S]" % \
(start, nt1, mid, nt2, end, start, index[(nt1,nt2)], end)
wist[start][end] = index[(nt1,nt2)]
return wfst

DISPLAY TABLE

def display(wfst, tokens):
print \nWFST ' + ' "join([("%-4d" % i) for i in range(1, len(wfst))])
for i in range(len(wfst)-1):
print "%d " % i,
for jin range(1, len(wfst)):
print "%-4s" % wist[i][j],
print

RESULTS

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

>>> wfstO = init_wfst(tokens, grammar)
>>> display(wfstO, tokens)

WFST1 2 3 4 5 6 7 8
0 Det .
N .
v ..
Det .
N .
P . .
Det .

No o~ wNn =

WITH TRACING

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

>>> wfst2 =

complete wfst(wfst0,tokens,trace=True)
0] Det [1] N [2] ==> [0] NP [2]
3] Det [4] N [5] ==> [3] NP [5]
6] Det [7] N [8] ==> [6] NP [8]
2] V [3] NP [5] ==> [2] VP [5]
5] P [6] NP [8] ==> [5] PP [8]
0] NP [2] VP [5] ==> [0] S [5]
3] NP [5] PP [8] ==> [3] NP [8]
2] V [3] NP [8] ==> [2] VP [8]
2] VP [5] PP [8] ==> [2] VP [8]
0] NP [2] VP [8] ==> [0] S [8]

RESULTS

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

>>> wfst1 = complete_wfst(wfst0,tokens)
>>> display(wfst1, tokens)

WFST 1 2 3 4 5 6 7 8
0 Det NP S S

1 N .

2 v . VP . . VP
3 Det NP . . NP
4 N .

5 P . PP
6 Det NP
7 N

EARLEY ALGORITHM

Top-down
% Does not require CNF, handles left-

recursion.

Proceeds left-to-right filling in a chart

s States contain 3 pieces of info:

¢ Grammar rule
% Progress made in recognizing it

s Position of subtree in input string

EARLEY
ALGORITHM

PARSE TABLE

As before, columns correspond to gaps

Entry in column n of the form
% A—uv, k
% Means predicting that we’ll use rule A = uv,
and so far have verified u in input matches

section of input [k,n]

Ex: o Book 1 that 2 flight 3

3 NP — Det.Nom,1 in column 2 means have
recognized “that” (word[1,2]) is Det and hope

to show Nom occurs later

EARLEY ALGORITHM

Add ROOT — . S to column 0.
For each j from 0 to n:
For each dotted rule in column j,
(including those added as we go!)
look at what’s after the dot:
e Ifit's a word w, SCAN:
— If w matches the input word between j and j+1,
advance the dot and add the new rule to column j+1
e If it’s a non-terminal X, PREDICT:
— Add all rules for X to the bottom of column j, with
the dot at the start: e.g. X = .Y Z
o If there's nothing after the dot, ATTACH:

— We've finished some constituent, A, that started in
column i<j. So for each rule in column j that has A
after the dot: Advance the dot and add the result to
the bottom of column j.

Return true if last column has ROOT — S .

IDEA OF ALGORITHM

Process all hypotheses in order

May add new hypotheses (or try to add old)

Process according to what after dot

if word, scan and see if matches

if non-terminal, predict ways to match

¢ if want, can be smart and peek ahead to reduce possibilities
if at end, have complete constituent and attach to
those that need it.

EXAMPLE

EARLEY EXAMPLE

chart[0] book

ROOT—.S, 0

S—= .NPVP O 3

S — .Aux NP VP, 0 X predictions

S— VP, 0 for§

S — NP VP VP — Verb

S — Aux NP VP VP — Verb NP

S — VP Det — that | this | a | the

NP — Det NOM Noun — book | flight | meal | man
NOM — Noun Verb — book | include | read
NOM — Noun NOM Aux — does

NP — . Det Nom, 0 | X

Book that flight!

VP — . Verb, 0

VP — . Verb NP, 0

X because book is not Aux or Det

EARLEY EXAMPLE

EARLEY EXAMPLE

chart[0] book chart[1] that chart[2] fight

chart[0] book chart[1] that
ROOT—-.S, 0 Verb — book ., 0 Scanner
S— NP VP 0 VP — Verb ., 0
Completer
S —= . Aux NP VP, 0| VP — Verb. NP, 0
S—.VPO0 S—=VP.,0 Completer
NP — . Det Nom, 0 | NP — . Det Nom, 1
VP — . Verb, 0
VP — . Verb NP, 0

ROOT—.S, 0

Verb — book ., 0

Det — that ., 1

S— .NPVP 0

VP — Verb ., 0

NP — Det . NOM, 1

S — . Aux NP VP, 0

VP — Verb . NP, 0

NOM — . Noun, 2

S—=.VP 0

S—=VP,0

NOM — . Noun NOM, 2

NP — . Det NOM, 0

NP — . Det NOM, 1

VP — . Verb, 0

VP — . Verb NP, 0

EARLEY EXAMPLE

char‘t[()]/szhau‘t[ll%’alL chart[2] Tlight chart[3]

Noun — flight., 2

ROOT—.S, 0 Verb = book ., 0 Det — that ., 1

S — NP VP, 0 VP = Verb ., 0 NP — Det. NOM, 1 NOM — Noun ., 2

S—.AuxNPVP0 | VP — Verb.NP,0 NOM — . Noun, 2 NOM — Noun . NOM, 2

S—.VR0 S=VP.0 NOM —. Noun NOM, 2| NP — Det NOM ., 1
NP —. Det NOM, 0 |NP —. Det NOM, 1 VP — Verb NP ., 0
VP = Verb, 0 S—=VP.0 4
VP . Verb NP, 0 NOM — .., 3

COMPLEXITY

% Size of table 1s n*nG

Processing one cell might require search
previous chart and check for dups.

3% Total O(G?n?)

UsING NLTK TO
PARSE

USING NLTK

import nltk

grammar = nltk.parse_cfg(""
NP -> NNS | JJ NNS | NP CC NP
NNS -> "men" | "women" | "children" | NNS CC NNS
JJ ->"old" | "young"
CC ->"and" | "or"
”l)

parser = nltk.ChartParser(grammar, nltk.parse. BU_STRATEGY)

Alvo TD_STRATEGY

USING NLTK

>>> sent = 'old men and women'.split()
>>> for tree in parser.nbest_parse(sent):
print tree

(NP (JJ old) (NNS (NNS men) (CC and) (NNS women)))
(NP (NP (JJ old) (NNS men)) (CC and) (NP (NNS women)))

STATISTICAL
PARSING

WHY USE PROBABILITIES IN
PARSING?

Disambiguation
Language modeling -- fix errors

Use probabilistic CFGs

USING PROBABILITIES

Assign probabilities to parse trees

by assigning probabilities to rules

s Will allow us to compare different parses

to pick most likely.
% Often need external context as well ...
% More later

Need good dictionary w/parts of speech

ASSIGN PROBABILITIES

Attach probabilities to rules
Represent probability of using rule, given
already have LHS.
Rules from given LHS must add up to 1
% VP — Verb .65
VP — Verb NP 40
% VP — Verb NP NP .05

COMPUTING PROBABILITIES

st Compute probability of tree by multiplying

probabilities of rules used.

Probability of sentence if sum of

probabilities of all of its parse trees.

Can read sentence off of parse tree.

Sum of probabilities of all grammatical
sentences should add up to 1 to have a
conststent grammar
3% Problems: S — SS, S —a

DISAMBIGUATING SENTENCES

Choose the parse tree with highest
probability to disambiguate sentence.

Just a first approximation!

PROBABILISTIC CYK

function PCKY_Parse(words, grammar)
n < length(words)
for w <= 1tondo
table[w-1,w] <= {A | A — words[w] € grammar}
for start <= 0 to n-w do # utart &s row
end < start + w # end i column
for mid < start+1 to end-1
for every X in table[start,mid]
for every Y in table[mid,end]
forall Bs.t B— XY € grammar
add B, prob to table[start,end]

add B, prob to table[startend]

for every X in table[start,mid]
for every Y in table[mid,end]
for all Bs.t B — X Y € grammar
add B to table[start,end] with probability p
where px = P(X) from table[start,mid]
py = P(Y) from table[mid,end]
pb - P(B—XY)
pr=px * py * pb
if B not in table[start,end]
p=pr
else

p = max(pr,p for B in table[start,end]

GETTING PROBABILITIES OF
RULES

s If possible, use an annotated database
(treebank)
% Penn Treebank has ~ 1.6 million words
% Available in other languages as well
Collect count for each rule expansion and
normalize:
t
Pla— fla) = Lowntla =)
>, Count(a —)

PROBABILISTIC PARSES

3¢ Notice only need to keep at each node,

parse tree for B w/max. probability if only
want most likely parse.

s If want probability of all, then have to add
each of them to table and keep track of
probabilities.

LEARN BY APPROXIMATIONS

Need probabilistic parser to assign
probabilities to ambiguous parses!

% Most sentences are ambiguous!!
One technique:
Start w/ all same probability

Compute new probability for each parse

i repeat ...

LEARNING PROBABILITIES

% What if don’t have one for kind of corpus?
Take large collection of text and parse.

If ambiguous, keep all possible parses

Guess relative probabilities for ambiguous Hp???

3¢ Continue as with treebank

PCFG’s IN NLTK

USING NLTK

import nltk

grammar = nltk.parsefpcfg(”'
NP -> NNS [0.5] | JJ NNS [0.3] | NP CC NP [0.2]
NNS -> "men" [0.1] | "women" [0.2] | "children" [0.3] | NNS CC NNS [0.4]
JJ -> "old" [0.4] | "young" [0.6]
CC->"and" [0.9] | "or" [0.1]
"y

viterbi_parser = nltk.ViterbiParser(grammar)
>>> vent = 'old men and women'split()

>>> print viterbi_parserparve (sent)
(NP (JJ old) (NNS (NNS men) (CC and) (NNS women))) (p=0.000864)

ANY QUESTIONS?

