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Disclaimer: Slide contents borrowed from many sources on web!

CYK IN PYTHON
FROM BIRD

UsSING NLTK w/CYK

Following assumes no ambiguity!

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

grammar = nltk.parse_cfg("™"
S ->NP VP
PP -> P NP
NP ->Det N | NP PP
VP ->V NP | VP PP
Det -> 'the'
N -> 'kids' | 'box'| 'floor
V -> 'opened'
P ->'on'

unu)

INITIALIZE TABLE

def init_wfst(tokens, grammar):
numtokens = len(tokens)

# fill w/ dots
wfst = [['.” for i in range(numtokens+1)]
forjin range(numtokens+1)]

# fill in diagonal

for i in range(numtokens):
productions = grammar.productions(rhs=tokensi])
wist[i][i+1] = productions[0].lhs()

return wfst

FILL IN TABLE

def complete_wfst(wfst, tokens, trace=False):
index = {}
for prod in grammar.productions(): #make reverse lookup
index[prod.rhs()] = prod.lhs()
numtokens = len(tokens)
for span in range(2, numtokens+1):
for start in range(numtokens+1-span): #go down diagonal
end = start + span
for mid in range(start+1, end):
nt1, nt2 = wfst[start][mid], wfst[mid][end]
if (nt1,nt2) in index:
if trace:
print "[%s] %3s [%S] %3s [%S] ==> [%S] %3s [%S]" % \
(start, nt1, mid, nt2, end, start, index[(nt1,nt2)], end)
wist[start][end] = index[(nt1,nt2)]
return wfst

DISPLAY TABLE

def display(wfst, tokens):
print \nWFST ' + ' "join([("%-4d" % i) for i in range(1, len(wfst))])
for i in range(len(wfst)-1):
print "%d " % i,
for jin range(1, len(wfst)):
print "%-4s" % wist[i][j],
print




RESULTS

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

>>> wfstO = init_wfst(tokens, grammar)
>>> display(wfstO, tokens)

WFST1 2 3 4 5 6 7 8
0 Det .
N .
v ..
Det .
N .
P . .
Det .

No o~ wNn =

WITH TRACING

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

>>> wfst2 =

complete wfst(wfst0,tokens,trace=True)
0] Det [1] N [2] ==> [0] NP [2]
3] Det [4] N [5] ==> [3] NP [5]
6] Det [7] N [8] ==> [6] NP [8]
2] V [3] NP [5] ==> [2] VP [5]
5] P [6] NP [8] ==> [5] PP [8]
0] NP [2] VP [5] ==> [0] S [5]
3] NP [5] PP [8] ==> [3] NP [8]
2] V [3] NP [8] ==> [2] VP [8]
2] VP [5] PP [8] ==> [2] VP [8]
0] NP [2] VP [8] ==> [0] S [8]

RESULTS

tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]

>>> wfst1 = complete_wfst(wfst0,tokens)
>>> display(wfst1, tokens)

WFST 1 2 3 4 5 6 7 8
0 Det NP S S

1 N .

2 v . VP . . VP
3 Det NP . . NP
4 N .

5 P . PP
6 Det NP
7 N

EARLEY ALGORITHM

# Top-down
% Does not require CNF, handles left-

recursion.

# Proceeds left-to-right filling in a chart

s States contain 3 pieces of info:

¢ Grammar rule
% Progress made in recognizing it

s Position of subtree in input string

EARLEY
ALGORITHM

PARSE TABLE

# As before, columns correspond to gaps

# Entry in column n of the form
% A—uv, k
% Means predicting that we’ll use rule A = uv,
and so far have verified u in input matches

section of input [k,n]

# Ex: o Book 1 that 2 flight 3

3 NP — Det.Nom,1 in column 2 means have
recognized “that” (word[1,2]) is Det and hope

to show Nom occurs later




EARLEY ALGORITHM

Add ROOT — . S to column 0.
For each j from 0 to n:
For each dotted rule in column j,
(including those added as we go!)
look at what’s after the dot:
e Ifit's a word w, SCAN:
— If w matches the input word between j and j+1,
advance the dot and add the new rule to column j+1
e If it’s a non-terminal X, PREDICT:
— Add all rules for X to the bottom of column j, with
the dot at the start: e.g. X = .Y Z
o If there's nothing after the dot, ATTACH:

— We've finished some constituent, A, that started in
column i<j. So for each rule in column j that has A
after the dot: Advance the dot and add the result to
the bottom of column j.

Return true if last column has ROOT — S .

IDEA OF ALGORITHM

# Process all hypotheses in order

# May add new hypotheses (or try to add old)

# Process according to what after dot

if word, scan and see if matches

if non-terminal, predict ways to match

¢ if want, can be smart and peek ahead to reduce possibilities
# if at end, have complete constituent and attach to
those that need it.

EXAMPLE

EARLEY EXAMPLE

chart[0] book

ROOT—.S, 0

S—= .NPVP O 3

S — .Aux NP VP, 0 X predictions

S— VP, 0 for§

S — NP VP VP — Verb

S — Aux NP VP VP — Verb NP

S — VP Det — that | this | a | the

NP — Det NOM Noun — book | flight | meal | man
NOM — Noun Verb — book | include | read
NOM — Noun NOM Aux — does

NP — . Det Nom, 0 | X

Book that flight!

VP — . Verb, 0

VP — . Verb NP, 0

X because book is not Aux or Det

EARLEY EXAMPLE

EARLEY EXAMPLE

chart[0] book chart[1] that chart[2] fight

chart[0] book chart[1] that
ROOT—-.S, 0 Verb — book ., 0 Scanner
S— NP VP 0 VP — Verb ., 0
Completer
S —= . Aux NP VP, 0| VP — Verb. NP, 0
S—.VPO0 S—=VP.,0 Completer
NP — . Det Nom, 0 | NP — . Det Nom, 1
VP — . Verb, 0
VP — . Verb NP, 0

ROOT—.S, 0

Verb — book ., 0

Det — that ., 1

S— .NPVP 0

VP — Verb ., 0

NP — Det . NOM, 1

S — . Aux NP VP, 0

VP — Verb . NP, 0

NOM — . Noun, 2

S—=.VP 0

S—=VP,0

NOM — . Noun NOM, 2

NP — . Det NOM, 0

NP — . Det NOM, 1

VP — . Verb, 0

VP — . Verb NP, 0




EARLEY EXAMPLE

char‘t[()]/szhau‘t[ll%’alL chart[2] Tlight chart[3]

Noun — flight., 2

ROOT—.S, 0 Verb = book ., 0 Det — that ., 1

S — NP VP, 0 VP = Verb ., 0 NP — Det. NOM, 1 NOM — Noun ., 2

S—.AuxNPVP0 | VP — Verb.NP,0 NOM — . Noun, 2 NOM — Noun . NOM, 2

S—.VR0 S=VP.0 NOM —. Noun NOM, 2| NP — Det NOM ., 1
NP —. Det NOM, 0 |NP —. Det NOM, 1 VP — Verb NP ., 0
VP = Verb, 0 S—=VP.0 4
VP . Verb NP, 0 NOM — .., 3

COMPLEXITY

% Size of table 1s n*nG

# Processing one cell might require search
previous chart and check for dups.

3% Total O(G?n?)

UsING NLTK TO
PARSE

USING NLTK

import nltk

grammar = nltk.parse_cfg(""
NP -> NNS | JJ NNS | NP CC NP
NNS -> "men" | "women" | "children" | NNS CC NNS
JJ ->"old" | "young"
CC ->"and" | "or"
”l)

parser = nltk.ChartParser(grammar, nltk.parse. BU_STRATEGY)

Alvo TD_STRATEGY

USING NLTK

>>> sent = 'old men and women'.split()
>>> for tree in parser.nbest_parse(sent):
print tree

(NP (JJ old) (NNS (NNS men) (CC and) (NNS women)))
(NP (NP (JJ old) (NNS men)) (CC and) (NP (NNS women)))

STATISTICAL
PARSING




WHY USE PROBABILITIES IN
PARSING?

# Disambiguation
# Language modeling -- fix errors

# Use probabilistic CFGs

USING PROBABILITIES

# Assign probabilities to parse trees

# by assigning probabilities to rules

s Will allow us to compare different parses

to pick most likely.
% Often need external context as well ...
% More later

# Need good dictionary w/parts of speech

ASSIGN PROBABILITIES

# Attach probabilities to rules
# Represent probability of using rule, given
already have LHS.
# Rules from given LHS must add up to 1
% VP — Verb .65
# VP — Verb NP 40
% VP — Verb NP NP .05

COMPUTING PROBABILITIES

st Compute probability of tree by multiplying

probabilities of rules used.

# Probability of sentence if sum of

probabilities of all of its parse trees.

# Can read sentence off of parse tree.

# Sum of probabilities of all grammatical
sentences should add up to 1 to have a
conststent grammar
3% Problems: S — SS, S —a

DISAMBIGUATING SENTENCES

# Choose the parse tree with highest
probability to disambiguate sentence.

# Just a first approximation!

PROBABILISTIC CYK

function PCKY_Parse(words, grammar)
n < length(words)
for w <= 1tondo
table[w-1,w] <= {A | A — words[w] € grammar}
for start <= 0 to n-w do # utart &s row
end < start + w # end i column
for mid < start+1 to end-1
for every X in table[start,mid]
for every Y in table[mid,end]
forall Bs.t B— XY € grammar
add B, prob to table[start,end]




add B, prob to table[startend]

for every X in table[start,mid]
for every Y in table[mid,end]
for all Bs.t B — X Y € grammar
add B to table[start,end] with probability p
where px = P(X) from table[start,mid]
py = P(Y) from table[mid,end]
pb - P(B—XY)
pr=px * py * pb
if B not in table[start,end]
p=pr
else

p = max(pr,p for B in table[start,end]

GETTING PROBABILITIES OF
RULES

s If possible, use an annotated database
(treebank)
% Penn Treebank has ~ 1.6 million words
% Available in other languages as well
# Collect count for each rule expansion and
normalize:
t
Pla— fla) = Lowntla =)
>, Count(a — )

PROBABILISTIC PARSES

3¢ Notice only need to keep at each node,

parse tree for B w/max. probability if only
want most likely parse.

s If want probability of all, then have to add
each of them to table and keep track of
probabilities.

LEARN BY APPROXIMATIONS

# Need probabilistic parser to assign
probabilities to ambiguous parses!

% Most sentences are ambiguous!!
# One technique:
# Start w/ all same probability

# Compute new probability for each parse

i repeat ...

LEARNING PROBABILITIES

% What if don’t have one for kind of corpus?
# Take large collection of text and parse.

# If ambiguous, keep all possible parses

# Guess relative probabilities for ambiguous  Hp???

3¢ Continue as with treebank

PCFG’s IN NLTK




USING NLTK

import nltk

grammar = nltk.parsefpcfg(”'
NP -> NNS [0.5] | JJ NNS [0.3] | NP CC NP [0.2]
NNS -> "men" [0.1] | "women" [0.2] | "children" [0.3] | NNS CC NNS [0.4]
JJ -> "old" [0.4] | "young" [0.6]
CC->"and" [0.9] | "or" [0.1]
"y

viterbi_parser = nltk.ViterbiParser(grammar)
>>> vent = 'old men and women'split()

>>> print viterbi_parserparve (sent)
(NP (JJ old) (NNS (NNS men) (CC and) (NNS women))) (p=0.000864)

ANY QUESTIONS?




