
CS 181:

Natural Language

Processing

Lecture 10: Parsing

K i m B r u c e

P o m o n a C o l l e g e

S p r i n g 2 0 0 8

Disclaimer: Slide contents borrowed from many sources on web!

Example CFG

T = {this, that, a, the, man, book, flight, meal, include, read, does}

N = {S, NP, NOM, VP, Det, Noun, Verb, Aux}

S - start

R =

S ! NP VP VP ! Verb

S ! Aux NP VP VP ! Verb NP

S ! VP Det ! that | this | a | the

NP ! Det NOM Noun ! book | flight | meal | man

NOM ! Noun Verb ! book | include | read

NOM ! Noun NOM Aux ! does

Why Parsing?

Machine translation:

L1 " PT1 " PT2 " L2

Speech synthesis from parsing:

The government plans to raise income tax.

The government plans to raise income tax the
imagination.

Speech recognition:

Put the file in the folder.

Put the file and the folder.

Why Parsing?

Grammar Checking

Indexing for information retrieval

Information extraction

Subject vs. object

Human Language

Parsing

Human Language

Processing

Seven principles from Kimball, 1973,
Cognition 2:15-47

1. Top-down: parsing in natural language
proceeds according to a top-down algorithm

2. Right association: Sentences organize into
right-branching structures (less complex)

3. New nodes: A new node is signalled by a
function word (preps, det, conjunctions,
complementizers, auxs, wh-words)

Human Language

Processing

4. Two sentences: Max of two sentences can be
parsed in parallel

That that Joe left bothered Susan surprised Max

5. Closure: A phrase is closed as soon as possible
(unless the next node is a constituent of the
phrase)

They knew that the girl was in the closet

They knew the girl was in the closet

6. Fixed structure: Costly to reorganize the
constituent after a phrase has been closed

Garden path sentences

Human Language

Processing

7. Processing: When a phrase is closed, it is
pushed down into a syntactic processing stage
and cleared from short-term memory

Tom saw that the cow jumped over the moon.

Bottom-Up

Parsing

Bottom-Up Parsing

Data-driven: Start w/ string. Rewrite by
replacing RHS by LHS of rules until get S.

May have several RHS matches.

Usually presented as shift-reduce parse

YACC

NOM

Noun

NOM

Det

book that flight

Noun

NOM

Noun

NOM

Det

book that flight

Noun

NP

Verb

NOM

Det

book that flight

Noun Verb

NOM

Det

book that flight

Noun

NP

Shift-Reduce

sentence ! NounPhrase VerbPhrase

NounPhrase ! Art Noun

VerbPhrase ! Verb | Adverb Verb

Art ! the | a | ...

Verb ! jumps | sings | ...

Noun ! dog | cat | ...

Parse: The dog jumps

Stack Input Sequence

() (the dog jumps)

(the) (dog jumps) SHIFT word onto stack

(Art) (dog jumps) REDUCE using grammar rule

(Art dog) (jumps) SHIFT..

(Art Noun) (jumps) REDUCE..

(NounPhrase) (jumps) REDUCE

(NounPhrase jumps) () SHIFT

(NounPhrase Verb) () REDUCE

(NounPhrase VerbPhrase)() REDUCE

(Sentence) () SUCCESS

Draw trees as parse!

Bottom-Up Parsing

Do we shift or reduce?

If reduce, which rule do we use?

With prog. langs, build table to always tell
you what to do -- deterministic.

Programming languages designed to be
unambiguous. We don’t have that luxury!

!-rules can be applied anywhere!

May need to backtrack!

Top-Down vs. Bottom-Up

Top-down may explore paths that can
never result in desired string

In prog. langs, can make sure that doesn’t
happen.

Bottom up may build subtrees that can not
be part of trees rooted at S.

Both may have to repeat work when
backtracking!

Keys to Success

Watch out for bad grammars

left-recursive for top-down (VP ! VP PP)

Try to avoid redoing work when
backtracking

Grammar transformations help

... but linguists will hate you!

CKY Parsing

Dynamic Programming:

CKY Parser

Given CFG in CNF and an input string,
produce the collection of all valid parse
trees.

Think recursively: what about last step in
building a parse tree for subsequence of
input.

Suppose root is labeled A.

If non-trivial, top production is A ! B C

Thus, string w produced by A can be written wB

wC where B !* wB, C !* wB

Need to search to see where to divide w.

Dynamic Programming

Number gaps between words:

0 Time 1 flies 2 like 3 an 4 arrow 5.

Create n ! n upper-triangular table

rows: o to n-1.

cols: 1 to n.

cell[i,j] contains non-terminals that could head a
subtree generating words between i and j

E.g., cell[3,5] contains NP

EXample Grammar in

CNF

NP ! time S ! NP VP

Vst ! time S ! Vst NP

NP ! flies S ! S PP

VP ! flies VP ! V NP

P ! like VP ! VP PP

V ! like NP ! Det N

Det ! an NP ! NP PP

N ! arrow NP ! NP NP

PP ! P NP

Algorithm

function CKY_Parse(words, grammar)

 n # length(words)

 for w # 1 to n do

 table[w-1,w] # {A | A ! words[w] $ grammar}

 for start # 0 to n-w do # start is row

 end # start + w # end is column

 for mid # start+1 to end-1

 for every X in table[start,mid]

 for every Y in table[mid,end]

 for all B s.t B ! X Y $ grammar

 add B to table[start,end]

Creating a Table

Enter the part of speech for wordi in cell[i-1,i]

0 Time 1 flies 2 like 3 an 4 arrow 5

0

1

2

3

4

NP, Vst

NP, VP

P, V

Det

N

Filling In Table

0 Time 1 flies 2 like 3 an 4 arrow 5

0

1

2

3

4

NP, Vst NP

NP, VP

P, V

Det

N

NP ! NP1 NP

Filling In Table

0 Time 1 flies 2 like 3 an 4 arrow 5

0

1

2

3

4

NP, Vst NP, S2

NP, VP

P, V

Det

N

S ! NP1 VP, S ! Vst1 NP

Filling In Table

0 Time 1 flies 2 like 3 an 4 arrow 5

0

1

2

3

4

NP, Vst NP, S2

NP, VP -

P, V -

Det NP

N

NP ! Det4 N

Filling In Table

0 Time 1 flies 2 like 3 an 4 arrow 5

0

1

2

3

4

NP, Vst NP, S2 -

NP, VP - -

P, V - VP, PP

Det NP

N

VP ! V3 NP, PP ! P3 NP

Filling In Table

0 Time 1 flies 2 like 3 an 4 arrow 5

0

1

2

3

4

NP, Vst NP, S2 - -

NP, VP - - S, NP, VP

P, V - VP, PP

Det NP

N

S ! NP2 VP, NP ! NP2 PP, VP ! VP2 PP

Filling In Table

0 Time 1 flies 2 like 3 an 4 arrow 5

0

1

2

3

4

NP, Vst NP, S2 - - S5, NP2

NP, VP - - S, NP, VP

P, V - VP, PP

Det NP

N

S ! NP1 VP, NP ! NP1 NP, S ! Vst1 NP,
NP ! NP2 PP, S ! NP2 VP, S ! S2 PP

Backpointer to Parse

Trees

Each entry in table corresponds to a parse
tree

Reconstruct using backpointers or could
actually associate tree with each entry
(sharing subtrees, for efficiency)

S

PPtime

flies

VP

VPNP

arrowan

NDet

NP

like

P

Correct Parse
S

PPtime

flies

NP

NPVst

arrowan

NDet

NP

like

P

Incorrect Parse

S

PP

time flies

VPNP

arrowan

NDet

NP

like

P

Incorrect Parse

S

Exercise

0 She 1 eats 2 fish 3 with 4 chopsticks 5
0

1

2

3

4

NP

NP ! she V ! eats NP ! NP PP

NP ! fish V ! fish VP ! V NP

NP ! fork P ! with VP ! VP PP

NP ! chopsticks S ! NP VP PP ! P NP

Earley

Algorithm

Earley Algorithm

Top-down

Does not require CNF, handles left-
recursion.

Proceeds left-to-right filling in a chart

States contain 3 pieces of info:

Grammar rule

Progress made in recognizing it

Position of subtree in input string

Parse Table

As before, columns correspond to gaps

Entry in column n of the form

A ! u.v, k

Means predicting that we’ll use rule A ! u v,
and so far have verified u in input matches
section of input [k,n]

Ex: 0 Book 1 that 2 flight 3
NP ! Det.Nom,1 in column 2 means have
recognized “that” (word[1,2]) is Det and hope
to show Nom occurs later

Add ROOT ! . S to column 0.

 For each j from 0 to n:

For each dotted rule in column j,
 (including those added as we go!)

look at what’s after the dot:

• If it’s a word w, SCAN:

– If w matches the input word between j and j+1,
advance the dot and add the new rule to column j+1

• If it’s a non-terminal X, PREDICT:

– Add all rules for X to the bottom of column j, with
the dot at the start: e.g. X ! . Y Z

• If there’s nothing after the dot, ATTACH:

– We’ve finished some constituent, A, that started in
column i<j. So for each rule in column j that has A
after the dot: Advance the dot and add the result to
the bottom of column j.

Return true if last column has ROOT ! S .

Earley Algorithm

Idea of Algorithm

Process all hypotheses in order

May add new hypotheses (or try to add old)

Process according to what after dot

if word, scan and see if matches

if non-terminal, predict ways to match

if want, can be smart and peek ahead to reduce possibilities

if at end, have complete constituent and attach to
those that need it.

Example

S ! NP VP VP ! Verb

S ! Aux NP VP VP ! Verb NP

S ! VP Det ! that | this | a | the

NP ! Det NOM Noun ! book | flight | meal | man

NOM ! Noun Verb ! book | include | read

NOM ! Noun NOM Aux ! does

Book that flight!

Earley Example

ROOT!.S, 0

S ! .NP VP, 0

S ! .Aux NP VP, 0

S ! .VP, 0

NP ! . Det Nom, 0

VP ! . Verb, 0

VP ! . Verb NP, 0

3
predictions

for S

chart[0]

!

!

! because book is not Aux or Det

book

Any Questions?

