
CSCI 181 Spring 2008

Homework 2
Due Tuesday, 02/12/08

1. Please do Problem 5 in section 3.2.4 on page 78 of Bird.

From Alex

import nltk

for speech in nltk.corpus.state_union.files():
text = nltk.corpus.state_union.words(speech)
words = nltk.defaultdict(int)

for w in text:
words[w] += 1

print speech, ":", words[’men’], words[’women’], words[’people’]

Not much of a trend is visible in the data in spite of the suggestions in the problem.

2. Please do Problem 11 in section 3.2.4 on page 78 of Bird.

From Matt

from nltk.utilities import *
import urllib
import re

class CustomURLopener(urllib.FancyURLopener):
version = ’CS181Bot/0.1’

def ghits(word):
""" Inputs: A word to use as a google search query

Outputs: The (approximate) number of hits for that query.
"""

Yank the whole page from google
word = word.replace(" ", "+")
searchURL = "http://www.google.com/search?query=" + word
urllib._urlopener = CustomURLopener()
page = urllib.urlopen(searchURL).read()

Clean up the HTML and normalize whitespace
page = clean_html(page)
page = page.split()
page = ’ ’.join(page)

Now find "Results 1-10 of n" and return n.
n = re.findall(r"(?:Results)?1\s?\-\s?10 of (?:about)?(\d+(?:\,\d+)*)",

1

CSCI 181 Spring 2008

page, re.I)
if len(n) < 1:

print page
print "Could not find the number of hits for the query ’%s’" % word
return -1

else:
hits = n[0].replace(",", "")
return int(hits)

Default test
print "%d" % ghits("test")

Output from default test is 1170000000.

3. Please do Problem 1b (money only) in section 3.4.4 on page 87 of Bird.

r’\$\d{1,3}(?:\,\d{3})*(?:\.\d\d)?’

4. Please do Problem 3 in section 3.4.4 on page 88 of Bird. Use the text in “austin-persuasion” in
the Gutenberg corpus of nltk. Compare the entries for the second 200 words using each of the
two stemmers and explain the differences.

From Erik:

import nltk,re,sys

showAll = False #True to show all stems, False to only show differences

#Create stemmers
porter = nltk.PorterStemmer()
lancaster = nltk.LancasterStemmer()

#Print header
if showAll:

print "Showing all words and stems"
else:

print "Showing only differences"
print "%12s %12s %12s" % ("Word", "Porter", "Lancaster")

#Stem each word
for word in nltk.corpus.gutenberg.words(’austen-persuasion.txt’)[200:400]:

pword = porter.stem(word).lower()
lword = lancaster.stem(word).lower()
if showAll or pword != lword:

print "%12s %12s %12s" % (word, pword,lword)

2

CSCI 181 Spring 2008

#Both stemmers have strengths and weaknesses, but the porter stemmer looks
#slightly more accurate in general. The Lancaster stemmer appears to have
#trouble with names. Output is as follows:

#Showing only differences
Word Porter Lancaster
Elizabeth elizabeth elizabe
June june jun
Anne ann an
still still stil
Mary mari mary
Precisely precis prec
printer printer print
Walter walter walt
his hi his
family famili famy
these these thes
after after aft
date date dat
Mary mari mary
birth birth bir
Married marri marry
county counti county
accurately accur acc
month month mon
his hi his
wife wife wif
history histori hist
rise rise ris
ancient ancient ant
family famili famy
usual usual us
mentioned mention ment
Dugdale dugdal dugd
office offic off
parliaments parliament parlia
loyalty loyalti loyal
dignity digniti dign
all all al
Marys mari mary
married marri marry

5. Please do Problem 3.4 on page 39 of JM.

Picture omitted. Do in two steps, first converting from lexical form to intermediate form. E.g.,
pin+PastPart ⇒ pinˆed. then go from intermediate to surface form: pinˆed ⇒ pinned.

Most problems came from assuming there was a memory that could remember the letter to be

3

CSCI 181 Spring 2008

doubled. Instead you must have a separate state for each last letter read. That way when you hit
the separator, you can generate an extra copy of the letter.

6. Please do Problem 3.9 on page 39 of JM.

The arc from q5 to q1 assures that if there is a “sz”, “ss”, or “sx” preceding the plural morpheme
then it will get properly converted to plural. A good example to try is the word “assesses”. I
must admit that while I know several words ending in “ss”, I don’t know any ending in “sz” or
“sx”.

7. Please do Problem 3.10 on page 39 of JM.

The answer to this depends on the cost functions for inserting, deleting, and substituting. If
inserting and deleting costs 1 and substituting costs 2, then drive to brief costs 4, while drive to
divers costs 3, thus the latter two are closer.

8. Please do Problem 3.12 on page 39 of JM. You may start with my program in file minEditDis-
tance.py in /common/cs/cs181/programs.

Your output should list the table in a style similar to that shown in Lecture 4 (though you’ll have
to figure out another way to produce something to take the place of arrows). Also present a list
of exactly the changes to be made to get from the start to the finish and its cost. Do your best
to make the output as readable as possible.

Matt’s solution, below, provides a very clear table of values and lines up words illustrating the
changes in transforming from one word to the next.

characters to indicate directions for trace in table
UP = u"\u2191"
LEFT = u"\u2190"
DIAG = u"\u21B0" #u"\u21B8"

return cost of replacing fst by snd
def substCost(fst,snd):

if fst == snd:
return 0

else:
return 2

Given cost of 1 for insertion or deletion and 2 for substitution
return dynamic programming table for distance[i,j] as defined in class
for transforming source to target.
Minimum cost is distance[n][m] for n = len(target), m = len(source)
def minEditDist(target, source):

n = len(target)
m = len(source)
m+1 rows, n+1 cols
distance = [[(0, " ") for i in range(n+1)] for j in range(m+1)]
for col in range(1,n+1):

(tmpdist, trace) = distance[0][col-1]
distance[0][col] = (tmpdist + 1, LEFT + u" ")

for row in range(1,m+1):

4

CSCI 181 Spring 2008

(tmpdist, trace) = distance[row-1][0]
distance[row][0]= (tmpdist + 1, u" " + UP)

for col in range(1,n+1):
for row in range(1,m+1):

Compute distances
(above, abvTrc) = distance[row-1][col]
(left, lftTrc) = distance[row][col-1]
(diag, dgTrc) = distance[row-1][col-1]
above += 1
left += 1
diag += substCost(source[row-1],target[col-1])

Find the minimum and mark the trace appropriately
newDist = min(above, left, diag)
newTrc = ""
if left == newDist: newTrc += LEFT
else: newTrc += " "
if diag == newDist: newTrc += DIAG
else: newTrc += " "
if above == newDist: newTrc += UP
else: newTrc += " "

Update the new distance
distance[row][col] = (newDist, newTrc)

return distance

def printDPTable(distances):
""" Makes the distance DP table legible
"""
finalString = u""
for row in distances:

finalString += u"["
finalString += u’ ’.join([u"%s%-2d" % (trc, dist) \

for (dist, trc) in row])
finalString += u"]\n"

print finalString

def getAlignment(target, source):
""" Gets the min edit distance DP table and traces back the arrows that

it records. It disambiguates equal paths by the following priority:
replacement first, deletion second, and addition last.

Produces a list of aligning commands composed of ’s’ for substitute,
’d’ for delete, ’i’ for insert, and ’ ’ for do nothing.

"""
distance = minEditDist(target, source)
#printDPTable(distance) # Show the resulting DP table.

5

CSCI 181 Spring 2008

#print

When we find an UP arrow, that means delete; LEFT arrow is add;
DIAG arrow is substitute or do nothing depending on the difference
between the two squares.
n = len(target)
m = len(source)
edits = []
while n != 0 or m != 0:

(dist, trc) = distance[m][n]

First check for substitutions/do-nothings, since those are
highest priority
if DIAG in trc:

dgDist = distance[m-1][n-1][0]
if dist == dgDist:

edits.append(’ ’)
else:

edits.append(’s’)
n -= 1
m -= 1

Next we check for deletions
elif UP in trc:

edits.append(’d’)
m -= 1

And lastly, additions
elif LEFT in trc:

edits.append(’i’)
n -= 1

If there’s nothing in the trace, we stop.
else:

break

Since we worked backwards, the operations list is
edits.reverse()
return edits

def showAlignment(target, source):
""" Uses edits as given by getAlignment to display the operations

necessary in converting the source string to the target string.
"""
edits = getAlignment(target, source)
srclist = list(source)
tgtlist = list(target)

6

CSCI 181 Spring 2008

for (idx, cmd) in enumerate(edits):
if cmd == ’ ’ or cmd == ’s’: continue
elif cmd == ’i’: srclist.insert(idx, ’*’)
elif cmd == ’d’: tgtlist.insert(idx, ’*’)

output = "".join(srclist) + "\n" + \
"|" * len(edits) + "\n" + \
"".join(tgtlist) + "\n" + \
"".join(edits)

return output

def testAlign(target, source):
""" A function for printing a simple test of the alignment functions.
"""
print "Source: %s\nTarget: %s\nDP Table:\n" % (source, target)
try: printDPTable(minEditDist(target, source))
except UnicodeEncodeError:

print "Unicode unavailable; can’t print DP table"
print
print showAlignment(target, source)

Sample output
print "-"*80
testAlign("brief", "drive")
print "-"*80
testAlign("divers", "drive")
print "-"*80

7

