:, James Noble, Victoria University of Wellington
-« kix@ecs.vuw.ac.nz

Although object-oriented programming is widely taught in
introductory computer science courses, no existing object-
oriented programming language is the obvious choice for

a teaching language. While Java was the de facto standard
throughout the 2000’s, in the last few years a range of newer
languages such as Python, Ruby, Scala, C#, F#, Processing, and
JavaScript have begun to make their way into classrooms —
and so to research labs, offices, and, eventually, large software

systems.

During ECOOP 2010, a group of language researchers and
educators concluded that the time was ripe for an effort to
design a language focussed on teaching. A “design manifesto”
was presented at SPLASH 2010, in which we attempted to

lay out design principles for a suitable a language. Since then
three of us (Black, Bruce and Noble) have been meeting weekly

to pursue the design of the language, which we have named

-l Kim. B. Bruce , Pomona College, CA
kim@cs.pomona.edu

:, Andrew P. Black , Portland State University
black@cs.pdx.edu

l Michael Homer, Victoria University of Wellington
"¢ mwh@ecs.vuw.ac.nz

“Grace”, in honor of Admiral Grace Hopper, and in the hope

that the name would serve as an admonition not to settle for

less-than-graceful solutions.

GRACE IN A NUTSHELL

Grace is an imperative object-oriented language with block
structure, single dispatch, and many familiar features. Our
design choices have been guided by the desire to make

Grace look as familiar as possible to programmers who know
contemporary object-oriented languages such as Java, CH,
Ruby, Scala, and Python. We have also been motivated by the
need to give instructors and text-book authors the freedom
to choose their own teaching sequence. Thus, in Grace it

is possible to start teaching using types, to introduce types
later, or not to use types at all. It is also possible to begin

with objects, or with classes, or with functions. Importantly,



r‘\en'ted

for

instructors can move from one approach to another while

staying within the same language.

The traditional first program in a new language is “Hello,

World”. In Grace, we kept this program as simple as we

possibly could:

print “Hello, World”

We think that “Hello, World” needs to be especially simple,
for a number of reasons. Not only is “Hello World” the first
program many experienced programmers write in a new
language, it is also the first programmer beginners will write
in any language. We want those first programs to be easy
because programming is hard enough as it is: especially for
novices, we don’t want the programming language to get in
the way of teaching the fundamental ideas. The less syntax
that is required, the less syntax there is for novices to get
wrong. Our experiences teaching Java, where it is necessary to
have the whole class chant incantations like “pubic static
void main(String arg[])” before the students could
even print “Hello” — and then having to explain the resulting
error messages — have convinced us that avoiding such

accidental complexity is important.

OBJECTS AND CLASSES
Grace can be regarded as either a class-based or an object-

based language, with single inheritance. A Grace class is an

object with a single factory method that returns a new object:

class aCat.named(n : String) {
def name = n

method meow { print “Meow” }

Here the class is called acat and the factory method is called
named. We can create an instance of that class — a new cat

object — and store it in a variable:

var theFirstCat := aCat.named “Timothy”

After executing this code sequence, theFirstcat is bound to
an object with two attributes: a constant field (name), and

a method meow. The method request theFirstCat.name
answers the string object “Timothy” and theFirstcCat.

meow has the effect of printing Meow.

An object can also be constructed using an object literal — a
particular form of Grace expression that creates a new object

when it is executed. For example:

var theSecondCat := object {
def name = “Timothy”

method meow { print “Meow” }

This code binds the variable theSecondcat to a newly
created object, which happens to be operationally equivalent

to theFirstCat.

FIELDS AND VARIABLES

Mutable and immutable bindings are distinguished by
keyword: var defines a name with a variable binding, which

can be changed using the : = operator, whereas def defines a

constant binding, initialized using =, as shown here.

var currentWord := “hello”

def world = “world”

currentWord := “new”

The keywords var and def are used to declare both local
bindings and fields inside objects. Like Java — but unlike
JavaScript — fields and methods cannot be added to an object
after it is created. A field that is declared with def is constant.

Each constant field declaration creates an accessor method

3



) eeeee
NN

on the object. Declaring a field with var creates two accessor

methods, one for fetching the currently bound object and one

for changing it. So, after the declaration

def car = object {
def numberOfSeats = 4

var speed: Number := 0.

}

the object car will have three methods called
numberOfSeats, speed, and speed:=(). When we use

() in the name of a method, it indicates the need to supply

arguments. So, the last method might be used by writing car.
speed := 30.

REQUESTING METHODS

Grace method names may consist of multiple parts (“mix-fix
notation”) as in Smalltalk or Objective-C. Separate lists of
arguments are interleaved between the parts of the name,

allowing them to be clearly labeled with their purpose. Thus
we might define on Number objects

method between (1l:Number) and (u:Number)

{

return (1 < self) && (self < u)

}

The syntax of a method request is similar to that used in
Java, C++, and many other object-oriented languages: obj.

meth(argl, arg2), butextended to allow the name of the
method to have multiple parts. We could request the above

method between ()and () on 7 by writing

7 .between(5)and(9)

Single arguments that are literals do not require parentheses,

so alternatively we could write

7 .between 5 and 9

Following many other languages, the receiver self can be

omitted. We have already seen several messages requested of
an omitted receiver; for example, print “Meow” is short for

self.print “Meow”.

BLOCKS AND CONTROL STRUCTURES
Like Ruby, C#, and Scala, Grace includes first-class blocks
(lambda expressions). A block is written between braces and

contains some piece of code for deferred execution. A block

may have arguments, which are separated from the code by
—>, so the successor functionis {x —> 1+x}. A block can
refer to names bound in its surrounding lexical scope, and

returns the value of the last-evaluated expression in its body.

Control structures are designed to look familiar to users of
other languages. However, as in Smalltalk and Self, control
structures in Grace are just methods that take blocks as
arguments.
if (x > 5) then {
print “Greater than five”

} else {
print “Too small”

}

for (node.children) do {
child —> process(child)

Notice that the use of braces and parentheses is not arbitrary:
parenthesized expressions will always be evaluated exactly
once, whereas expressions in braces are blocks, and may thus
be evaluated zero, one, or many times. A return statement
inside a block terminates the method that lexically encloses
the block, so it is possible to program quick exits from a
method by returning from the then block of an if ()then()

or the do block of awhile()do().

TYPES

Types and classes are strictly separated in Grace. A Grace class
is not a type, nor does a Grace class or object implicitly define
a type. When programmers need types they must define

them explicitly. We hope this separation will help us teach

the concepts of types independently from classes. To this end,
Grace supports both statically and dynamically typed code:
omitted types of local variables and constants are inferred (as
e.g. in Scala or C#), but omitted argument types are treated as

the predefined type Dynamic. Messages requested on type

Dynamic will be checked dynamically.

Grace types are structural: they describe properties of objects.
A type is a set of method requests; a type declaration gives a

name to a type.

type Vehicle = {
numberOfSeats —> Number
speed —> Number

speed:=(n : Number) —> Nothing

An object has a type if it has the appropriate methods, and if



the signatures of those methods conform to the signatures
in the type. No inheritance relationships or implements
declarations are necessary. The car object defined above has

the vehicle type, but also has the smaller type { speed —>
Number}.

Within dynamically typed code, types need not be mentioned
at all, and so the introduction of the concept of type can be
delayed until late in the teaching sequence. When instructors
do introduce types, they may do so in the language they are
already using, as opposed to, for example, starting teaching
in Python and then transitioning to Java. A static type checker
will support instructors who wish to require that all student
programs be fully typed.

HOW CAN YOU CONTRIBUTE?

The Grace Project maintains a website at
http://gracelang.org, including the project diary (as a blog),
the evolving language specification, an early prototype

Award-Winning Vendor
of Developer Productivity Tools

Tools Matter™

jetbrains.com

implementation, and other documents and papers about
Grace. We are actively interested in comments and feedback
about the language design, and as the project goes on,

about APIs, libraries, and implementations. We would really
appreciate programmers trying out prototypes as they are
released, and ultimately testing the specification by building

alternative implementations.

References

AP Black, KB Bruce, M Homer, J Noble. Grace: the absence of (inessential)
difficulty. Accessible from gracelang.org/documents, April 2012.

AP Black, KB Bruce, J Noble. The Grace Programming Language Draft
Specification Version 0.353. Accessible from gracelang.org/documents. April
2012.

AARRUS

INTERNATIONAL
SOFTWARE DEVELOPHENT

CONFERENCE 2012

;onference:0ct 1-3
Training: Sept. 30, Oct 4 -5

goto;

ﬂﬂﬂf&l‘ﬂl‘lﬂ&



http://gotocon.com/aarhus-2012/?utm_source=newsletter&utm_medium=email&utm_campaign=GOTOMAGVol2.1
http://gracelang.org/
http://gracelang.org/documents/index.html
http://gracelang.org/documents/index.html

