
92

PART 2

Static Types

93

94

5

Haskell

Haskell is a lazy, functional programming language that was initially designed by a

committee in the eighties and nineties. In contrast to many programming languages,

it is lazy, meaning that expressions are evaluated when their values are needed,

rather than when they are first encountered. It is functional, meaning that the main

organizational construct in the language is the function, rather than a procedure

or a class hierarchy.

Studying Haskell is useful for a number of reasons. First, studying a functional

language will make you think differently about programming. Mainstream lan-

guages are all about manipulating mutable state, whereas functional languages are

all about manipulating values. Understanding the difference will make you a better

programmer in whatever language you regularly use. Second, Haskell serves as a

good example of many of the topics we will be covering later in the book, particu-

larly issues related to type systems. Finally, the Haskell language is at the forefront

of language design, with many new research papers published each year about ex-

tensions to the language. Haskell thus provides a glimpse as to where mainstream

languages may be going in the future.

Because we will use Haskell in various chapters of the book to illustrate proper-

ties of programming languages, we will study Haskell in a little more detail than we

will study some other languages. Compilers for Haskell are available on the Inter-

net without charge. Several books and manuals covering the language are available.

In addition to on-line sources easily located by web search, Real World Haskell

(O’Reilly, 2009) is a good reference.

5.1 INTERACTIVE SESSIONS AND THE RUN-TIME SYSTEM

In addition to providing standard batch compilation, most Haskell compilers pro-

vide the same kind of read-eval-print loop as many Lisp implementations. In

this mode of use, programmers enter expressions and declarations one at a time.

As each is entered, the source code is type checked, compiled, and executed. Once

an identifier has been given a value by a declaration, that identifier can be used in

subsequent expressions.

95

96 Haskell

The program that implements the read-eval-print loop is often called a shell

or an interpreter, even though the code is actually compiled. Such shells are useful

for interactively experimenting with code and can function as debuggers. We will

use such a shell to explore various features of Haskell.

5.1.1 Expressions

For expressions, user interaction with the Haskell shell has the form

Prelude> <expression>

<print value>

it :: <type>

where “Prelude>” is the prompt for user input (The word “Prelude” indicates

that only the standard prelude module has been loaded). The second two lines are

output from the Haskell compiler and run-time system. These lines illustrate that if

an expression is entered, the shell will compile the expression and evaluate it. The

first line of the output <print value> is the value of the expression, serialized as

a string. The second line of output is a bit cryptic: it is a special identifier bound

to the value of the last expression entered and the notation “::” can be read “has

type,” so it :: <type> means that the variable it is bound to this most recent

expression and furthermore, it has type type.

It is probably easier to understand the idea from a few examples. Here are four

lines of input and the resulting compiler output:

Prelude> (5+3) -2

6

it :: Integer

Prelude> it + 3

9

it :: Integer

Prelude> if True then 1 else 5

1

it :: Integer

Prelude> 5 == 4

False

it :: Bool

In words, the value of the first expression is the integer 6. The second expression

adds 3 to the value it of the previous expression, giving integer value 9. The

third expression is an if-then-else, which evaluates to the integer 1, and the

fourth expression is a Boolean-valued expression (comparison for equality) with

value False.

5.1 Interactive Sessions and the Run-Time System 97

Each expression is parsed, type checked, compiled, and executed before the next

input is read. If an expression does not parse correctly or does not pass the type-

checking phase of the compiler, no code is generated and no code is executed. The

ill-typed expression

if True then 3 else False

for example, parses correctly because this has the correct form for an if-then-else.

However, the type checker rejects this expression because the Haskell type checker

requires the then and else parts of an if-then-else expression to have the same

types, as described in the next subsection. The compiler output for this expression

includes the error message

<interactive>:1:14:

No instance for (Num Bool)

arising from the literal ‘3’ at <interactive>:1:14

indicating a type mismatch. In more detail, the message says that the literal False,

which has type Bool, does not belong to the type class Num, which is the collection

of all types that support arithmetic operations and literals such as 3. Since Bool

does not belong to the Num type class, the type checker reports a type error because

the two branches of the if-then-else have different types. A detailed discussion

of the Haskell type system appears in Chapters 6 and 7.

5.1.2 Declarations

User input can be an expression or a declaration. The standard form for Haskell

declarations, followed by compiler output, is

Prelude> let <identifier> = <expression>

<identifier> :: <type>

The keyword let indicates we are introducing a new identifier whose value comes

from <expression>. The compiler type checks the expression and the shell output

indicates that the newly introduced identifier has the type of the expression. If we

ask the shell for the value of the identifier, the shell evaluates the expression bound

to the identifer and prints the result, as before. Here are some examples:

Prelude> let x = 7 + 2

x :: Integer

Prelude> x

9

it :: Integer

98 Haskell

Prelude> let y = x + 3

y :: Integer

Prelude> let z = x * y - (x + y)

z :: Integer

Prelude> z

87

it :: Integer

In words, the first declaration binds the expression 7+2 to the identifier x. When we

ask for the value of x by entering it at the command-line, the compiler evaluates the

expression associated with x and prints the resulting value 9. After this evaluation,

x is bound to the value 9, and so the expression 7+2 will not be evaluated again.

The second declaration refers to the value of x from the first declaration and binds

the expression x+3 to the identifier y. The third declaration binds the identifier z

to an expression that refers to both of the previous declarations. When we ask for

the value of z, the compiler evaluates the associated expression and prints 87 as the

result. Because the value of z depends upon the value of y, the shell will evaluate

the expression associated with y in the process of computing the value of z.

Functions can also be declared with the keyword let. The general form of user

input and compiler output is

Prelude> let <identifier> <arguments> = <expression>

<identifier> :: <arg type> -> <result type>

This declares a function whose name is <identifier>. The argument type is deter-

mined by the form of <arguments> and the result type is determined by the form

of <expression>.

Here is an example:

Prelude> let f x = x + 5

f :: (Num a) => a -> a

This declaration binds a function value to the identifier f. The value of f is a

function with an interesting type. It says that for any type a that belongs to the

Num type class (the “(Num a) =>” part of the syntax), function f can take a as an

argument and will return a as a result (the “a -> a” part of the syntax). Since the

type Integer belongs to the type class Num, a particular instance of the type for f

is Integer -> Integer. We will see more about this kind of type in Chapter 7.

The same function can be declared using an anonymous function written as

Prelude> let f = \x -> x + 5

f :: Integer -> Integer

5.2 Basic Types and Type Constructors 99

In this declaration, the identifier f is given the value of expression \x => x + 5,

which is a function expression like (lambda (x) (+ x 5)) in Lisp or λx.x+5 in

lambda calculus. Haskell requires that anonymous functions have monomorphic

types, which means that their types cannot mention type variables such as the a in

the earlier definition of f. As a result, the Haskell type checker assigns this later

version of f the monomorphic type Integer -> Integer. We will discuss functions

further in Section 1.3 and typechecking issues in Chapter 6.

Identifiers vs. Variables. An important aspect of Haskell is that the value of

an identifier cannot be changed by assignment. More specifically, if an identifier

x is declared by let x = 3, for example, then the value of x will always be 3. It

is not possible to change the value of x by assignment. In other words, Haskell

declarations introduce constants, not variables. The way to declare an assignable

variable in Haskell is to define a reference cell, which is similar to a cons cell in

Lisp, except that reference cells do not come in pairs. References and assignment

are explained in Chapter 8.

The Haskell treatment of identifiers and variables is more uniform than the

treatment of identifiers and variables in languages such as C and Java. If an integer

identifier is declared in C or Java, it is treated as an assignable variable. On the

other hand, if a function is declared and given a name in either of these languages,

the name of the function is a constant, not a variable. It is not possible to assign to

the function name and change it to a different function. Thus, C and Java choose

between variables and constants according to the type of the value given to the

identifier. In Haskell, a let declaration works the same way for all types of values.

5.2 BASIC TYPES AND TYPE CONSTRUCTORS

The core expression and declaration parts of Haskell are best summarized by a list

of the basic types along with the expression forms associated with each type.

5.2.1 Unit

Haskell’s unit type has only one element. Both the type and the element are written

as empty parentheses:

() :: ()

The unit type is used as the type of argument for functions that have no argu-

ments. C programmers may be confused by the fact that the term unit suggests

one element, whereas void seems to mean no elements. From a mathematical point

of view, “one element” is correct. In particular, if a function is supposed to return

an element of an empty type, then that function cannot return because the empty

set (or empty type) has no elements. On the other hand, a function that returns an

element of a one-element type can return. However, we do not need to keep track of

what value such a function returns, as there is only one thing that it could possibly

return. The Haskell type system is based on years of theoretical study of types;

most of the typing concepts in Haskell have been considered with great care.

100 Haskell

5.2.2 Bool

There are two values of type Bool, True and False:

True :: Bool

False :: Bool

The most common expression associated with Booleans is the conditional, with

if e1 then e2 else e3

having the same type as e2 and e3 if these have the same type and e1 has type

Bool. There is no if-then without else, as a conditional expression must have a

value whether the test is true or false. For example, an expression

Prelude> let nonsense = if a then 3

is not legal Haskell because there is no value for nonsense if the expression a is

False. More specifically, the input if a then 3 does not even parse correctly;

there is no parse tree for this string in the syntax of Haskell.

There are also Haskell Boolean operations for and, or, not, and so on. Conjunc-

tion (and) is written as &&, disjunction (or) is written as ||, and negation is written

as not. For example, here is a function that determines whether its two arguments

have the same Boolean value, followed by an expression that calls this function:

Prelude> let equiv x y = (x && y) || ((not x) && (not y))

equiv :: (Bool, Bool) -> Bool

Prelude> equiv True False

False

it :: Bool

In words, Boolean arguments x and y are the same Boolean value if they are either

both true or both false. The first subexpression, (x && y), is true if x and y are

both true and the second subexpression, ((not x) && (not y)), is true if they

are both false.

The conjunction and disjunction operations come with a fixed evaluation order.

In the expression (e1 && e2), where e1 and e2 are both expressions, e1 is evaluated

first. If e1 is true, then e2 is evaluated. Otherwise the value of the expression (e1

&& e2) is determined to be false without evaluating e2. Similarly, e2 in (e1 ||

e2) is evaluated only if the value of e1 is false.

5.2 Basic Types and Type Constructors 101

5.2.3 Integers

Haskell provides a number of different integer types of varying precision. The type

Integer corresponds to arbitrary precision signed integers; Int8, Int16, Int32, and

Int64 correspond to signed integers with the indicated size in bits; while Word8,

Word16, Word32, and Word64 correspond to unsigned integers with the indicated

sizes.

Many Haskell integer expressions are written in the usual way, with numeric

constants and standard arithmetic operations:

0,1,2,...,-1,-2,...:: (Num a) => a

+, -, * :: (Num a) => a -> a -> a

The type for the literals indicates that each integer literal can have any type a as

long as a belongs to the Num type class. In addition, the arithmetic operators for

addition (+), subtraction (-), and multiplication (*) work over any type a belonging

to the Num type class. Each of these operators is an infix binary operator. In Haskell,

any identifier comprised of symbols (such as +, -, etc.) is an infix operator.

The function div provides integer division for any type that belongs to the

Integral type class:

div :: (Integral a) => a -> a -> a

Types in the Num type class support operations that work for either floating

point numbers or integers, while the types that belong to the Integral type class

support operations on integers (like div). Integer types like Int32 and Word8 belong

to both the Num and Integral type classes. Because div is comprised of characters

and not symbols, it is not an infix operator:

Prelude> let quotient x y = div x y

quotient :: (Integral a) => a -> a -> a

However, we can convert any function into an infix operator by enclosing it in

backticks:

Prelude> let quotient x y = x ‘div‘ y

quotient :: (Integral a) => a -> a -> a

Similarly, we can convert any infix operator into a normal function by enclosing it

in parentheses:

Prelude> let plus2 x y = (+) x y

102 Haskell

plus2 :: (Num a) => a -> a -> a

5.2.4 Strings

Strings are written as a sequence of symbols between double quotes:

"Simon Peyton Jones" :: String

"Brendan Eich" :: [Char]

In Haskell, the type String is a synonym for the type [Char], which denotes a list

of characters. This design means that strings can be treated as lists of characters,

supporting all the usual list operations. String concatenation is written as ++, so

we have

Prelude> "James" ++ " " ++ "Gosling"

"James Gosling"

it :: [Char]

5.2.5 Real

Haskell has two types for floating-point numbers of varying precision: Float and

Double, as well as a type Rational for numbers that can be expressed as the ratio

of two integers. As we saw with integral types, Haskell uses a type class to group

the operations common to these types, in this case, the type class Fractional.

Literals with decimal points thus have type:

1.0, 2.0, 3.14159, 4.44444, . . . :: (Fractional t) => t

meaning they can be given any type that belongs to the Fractional type class:

Float, Double, and Rational. These three types also belong to the Num class, so

we can apply the operations +, -, and ∗ to Floats, Doubles, and Rationals as well.

The div operation, however, only works for elements of the Integral type class,

which does not include Floats, Doubles, or Rational. The operation (/) is used

to divide fractional numbers instead.

5.2.6 Tuples

A tuple may be a pair, triple, quadruple, and so on. In Haskell, tuples may be

formed of any types of values. Tuple values and types are written with parentheses.

For example, here is the compiler output for a pair, a triple, and a quadruple:

5.2 Basic Types and Type Constructors 103

Prelude> (True, "John McCarthy")

(True,"John McCarthy")

it :: (Bool, [Char])

Prelude> ("Brian", "Dennis", "Bjarne")

("Brian","Dennis","Bjarne")

it :: ([Char], [Char], [Char])

Prelude>(1, 2.3, 4.6, 10)

(1,2.3,4.6,10)

it :: (Integer, Double, Double, Integer)

For all types τ1 and τ2, the type (τ1, τ2) is the type of pairs whose first component

has type τ1 and whose second component has type τ2. The type (τ1, τ2, τ3) is a type

of triples, the type (τ1, τ2, τ3, τ4) a type of quadruples, and so on.

Components of a pair can be accessed using the functions fst and snd, respec-

tively. For examples:

Prelude> fst(3,4)

3

it :: Integer

Prelude> snd("Niklaus", "Wirth")

"Wirth"

it :: [Char]

Components of tuples with more elements can be accessed using pattern matching

constructs, which we will see in more detail in Section 1.3.

5.2.7 Lists

Haskell lists can have any length, but all elements of a list must have the same

type. We can write lists by listing their elements, separated by commas, between

brackets. Here are some example lists of different types:

Prelude> [1,2,3,4]

[1,2,3,4]

it :: [Integer]

Prelude> [True, False]

[True,False]

it :: [Bool]

Prelude> ["red", "yellow", "blue"]

["red","yellow","blue"]

it :: [[Char]]

104 Haskell

The type [τ] is the type of all lists whose elements have type τ .

In Haskell, the empty list is written []. The “cons” operation for adding an

element to the front of a list is an infix operator written as a single colon:

Prelude> 3 : []

[3]

it :: [Integer]

Prelude> 4 : 5 : it

[4,5,3]

it :: [Integer]

In the first list expression, 3 is “consed” onto the front of the empty list. The result

is a list containing the single element 3. In the second expression, 4 and 5 are consed

onto this list. In both cases, the result is an integer list, [Integer].

5.3 PATTERNS, DECLARATIONS, AND FUNCTION EXPRESSIONS

The declarations we have seen so far bind a value to a single identifier. One very

convenient syntactic feature of Haskell is that declarations can also bind values to

a set of identifiers by using patterns.

5.3.1 Value Declarations

The general form of value declaration associates a value with a pattern. A pattern

is an expression containing variables (such as x, y, z . . .) and constants (such

as true, false, 1, 2, 3 . . .), combined by certain forms such as tupling, record

expressions, and a form of operation called a constructor. The general form of value

declaration is

let <pattern> = <exp>

where the common forms of patterns are summarized by the following BNF gram-

mar:

<pattern> ::= <id> | <tuple> | <cons> | <constr> | <record>
<tuple> ::= (<pattern>, ..., <pattern>)

<cons> ::= <pattern> : <pattern>

<constr> ::= <id> <patterns>

<record> ::= <id> {<id>=<pattern>, ..., <id>=<pattern>}

<patterns> :: <pattern> ... <pattern>

5.3 Patterns, Declarations, and Function Expressions 105

In words, a pattern can be an identifier, a tuple pattern, a list cons pattern, a

declared data-type constructor pattern, or a record pattern. A tuple pattern is

a sequence of patterns between parentheses, a list cons pattern is two patterns

separated by a colon, a constructor pattern is an identifier (a declared constructor)

applied to the number of pattern arguments required by the constructor, and a

record pattern is a record-like expression with each field in the form of a pattern.

This BNF does not define the set of patterns exactly, as some conditions on patterns

are not context free and therefore cannot be expressed by BNF. For example, the

conditions that in a constructor pattern the identifier must be a declared constructor

and that the constructor must be applied to the right number of pattern arguments

are not context-free conditions. An additional condition on patterns, subsequently

discussed in connection with function declarations, is that no variable can occur

twice in any pattern.

Because a variable is a pattern, a value declaration can simply associate a value

with a variable. For example, here is a declaration that binds a tuple to the identifier

t, followed by a declaration that uses a tuple pattern to bind identifiers x, y, and

z.

Prelude> let t = (1,2,3)

t :: (Integer, Integer, Integer)

Prelude> let (x,y,z) = t

x :: Integer

y :: Integer

z :: Integer

Note that there are two lines of input in this example and four lines of compiler

output. In the first declaration, the identifier t is bound to a tuple. In the second

declaration, the tuple pattern (x,y,z) is given the value of t. When the pattern

(x,y,z) is matched against the triple t, identifier x gets value 1, identifier y gets

value 2, and identifier z gets value 3.

5.3.2 Function Declarations

The general form of a function declaration uses patterns. A single-clause definition

has the form

let f <patterns> = <exp>

and a multiple-clause definition has the form

let { f <patterns> = <exp> ; ...; f <patterns> = <exp> }

106 Haskell

For example, a function adding its arguments can be written as

let f (x,y) = x + y

Technically, the formal parameter of this function is a pattern (x, y) that must

match the actual parameter on a call to f. The formal parameter to f is a tuple,

which is broken down by pattern matching into its first and second components.

You may think you are calling a function of two arguments. In reality, you are

calling a function of one argument. That argument happens to be a pair of values.

Pattern matching takes the tuple apart, binding x to what you might think is the

first parameter and y to the second.

Here are some more examples illustrating other forms of patterns, each shown

with an associated compiler output:

Prelude> let f(x, (y,z)) = y

f :: (t, (t1, t2)) -> t1

Prelude> let g(x:y:z) = x:z

g :: [t] -> [t]

The first is a function on nested tuples and the second a function on lists that have

at least two elements.

An example of a multi-clause function is the following function, which computes

the length of a list:

Prelude> let {length [] = 0; length (x:xs) = 1 + length xs}
length :: (Num t1) => [t] -> t1

The first line in this code fragment is input (the declaration of the function length)

and the second line is the compiler output giving the type of this function. Here is

an example application of length and the resulting value:

Prelude> length [’a’, ’b’, ’c’, ’d’]

4

it :: Integer

When the function length is applied to an argument, the clauses are matched in the

order they are written. If the argument matches the constant [] (i.e., the argument

is the empty list), then the function returns the value 0, as specified by the first

clause. Otherwise the argument is matched against the pattern given in the second

clause (x:xs), and then the code for the second branch is executed. Because type

checking guarantees that length will be applied only to a list, these two clauses

cover all values that could possibly be passed to this function. The type of length,

5.3 Patterns, Declarations, and Function Expressions 107

(Num t1) => [t] -> t1, indicates that the function takes a list of any type t and

returns any type t1 that belongs to the Num type class. Such types will be explained

in the next two chapters.

The syntax given so far specifies how to define a function within a let block,

which is the context provided by the Haskell interpreter. Inside a code file, however,

functions call also be declared at the top level, in which case the syntax for a single-

line function is

f <patterns> = <exp>

and for a multi-line function is

f <patterns> = <exp>

...

f <patterns> = <exp>

For example, we can define the length function in a code file as

length [] = 0

length (x:xs) = 1 + (length xs)

Note that pattern matching is applied in order. For example, when the function

f (x,0) = x

f (0,y) = y

f (x,y) = x+y

is applied to an argument (a,b), the first clause is used if b=0, the second clause if

b =// 0 and a=0, and the third clause if b =// 0 and a =// 0. The Haskell type system will

keep f from being applied to any argument that is not a pair (a,b).

An important condition on patterns is that no variable can occur twice in any

pattern. For example, the following function declaration is not syntactically correct

because the identifier x occurs twice in the pattern:

Prelude> let { eq (x,x) = True; eq(x,y) = False }
<interactive>:1:11:

Conflicting definitions for ‘x’

Bound at: <interactive>:1:11

<interactive>:1:13

In the definition of ‘eq’

108 Haskell

This function is not allowed because multiple occurrences of variables express equal-

ity, and equality must be written explicitly into the body of a function.

In addition to declared functions, Haskell has syntax for anonymous functions.

The general form allows the argument to be given by a pattern:

\<pattern> -> <exp>

As an example, the anonymous function \x -> x + 1 adds one to its argument.

Anonymous functions are often used with higher-order functions, which are func-

tions that take other functions as arguments. For example, the map function is a

higher-order function that takes as arguments a function f and a list and applies f

to every element in the list. Here is an example, with compiler output:

Prelude> map (\x -> x + 1) [0,1,2,3]

[1,2,3,4]

it :: [Integer]

5.4 HASKELL DATA-TYPE DECLARATION

The Haskell data-type declaration is a special form of type declaration that declares

a type name and operations for building and making use of elements of the type.

The Haskell data-type declaration has the syntactic form

data <type name> = <constructor clause> | ... |
<constructor clause>

where a constructor clause has the form

<constructor clause> ::= <constructor> <arg types> |
<constructor>

where both <type name> and <constructor> are capitalized identifiers. The idea

is that each constructor clause specifies one way to construct elements of the type.

Elements of the type may be “deconstructed” into their constituent parts by pattern

matching. The following three examples illustrate some common ways of using data-

type declarations in Haskell programs.

Example. An Enumerated Data Type: Types consisting of a finite set of tokens can

be declared as Haskell data types. Here is a type consisting of three tokens, named

to indicate three specific colors:

5.4 Haskell Data-Type Declaration 109

data Color = Red | Blue | Green

This declaration indicates that the three elements of type color are Blue, Green,

and Red. Technically, values Blue, Green, and Red are called constructors. They

are called constructors because they are the ways of constructing values with type

color.

Example. A Tagged Union Data Type: Haskell constructors can be declared to take

arguments when constructing elements of the data type. Such constructors simply

“tag” their arguments so that values constructed in different ways can be distin-

guished.

Suppose we are keeping student records with names of B.S. students, names and

undergraduate institutions of M.S. students, and names and faculty supervisors of

Ph.D. students. Then we could define a type student that allows these three forms

of tuples as follows:

data Student = BS Name | MS (Name, School) | PhD (Name,

Faculty)

In this data-type declaration, BS, MS, and PhD are each constructors. However, unlike

in the color example, each Student constructor must be applied to arguments to

construct a value of type Student. We must apply BS to a name, MS to a pair

consisting of a name and a school, and PhD to a pair consisting of a name and a

faculty name in order to produce a value of type Student.

In effect, the type Student is the union of three types,

Student ≈ union {Name, Name*School Name*Faculty }

except that in Haskell “unions” (which are defined by data declarations), each value

of the union is tagged by a constructor that tells which of the constituent types the

value comes from. This is illustrated in the following function, which returns the

name of a student:

name :: Student → Name

name (BS n) = n

name (MS(n,s)) = n

name (PhD(n,f)) = n

The first line documents that the function name is a function from students to

names. The next three lines declare the function name. The function has three

clauses, one for each form of student.

110 Haskell

Example. A Recursive Type: Data-type declaration may be recursive in that the type

name may appear in one or more of the constructor argument types. Because of the

way type recursion is implemented, Haskell data types are a convenient, high-level

language construct that hides a common form of routine pointer manipulation.

The set of trees with integer labels at the leaves may be defined mathematically

as follows:

A tree is either

a leaf, with an associated integer label, or

a compound tree, consisting of a left subtree and a right subtree.

This definition can be expressed as a Haskell data-type declaration, with each part

of the definition corresponding to a clause of the data-type declaration:

data Tree = Leaf Int | Node (Tree, Tree)

The identifiers Leaf and Node are constructors, and the elements of the data type

are all values that can be produced by the application of constructors to legal

(type-correct) arguments. In words, a Tree is either the result of applying the

constructor Leaf to an integer (signifying a leaf with that integer label) or the

result of applying the constructor Node to two trees. These two trees, of course,

must be produced similarly with constructors Leaf and Node.

The following function shows how the constructors may be used to define a

function on trees:

inTree :: Int → Tree → Bool

inTree x (Leaf y) = x == y

inTree x (Node(y,z)) = inTree x y || inTree x z

This function looks for a specific integer value x in a tree. If the tree has the form

Leaf y, then x is in the tree only if x==y. If the tree has the form Node (y,z), with

subtrees y and z, then x is in the tree only if x is in the subtree y or the subtree z.

The type shows that inTree is a function that, given an integer and a tree, returns

a Boolean value.

An example of a polymorphic data-type declaration appears in Section 6.5.3,

after the discussion of polymorphism in Section 6.4.

5.5 RECORDS

Like Pascal records and C structs, Haskell records are similar to tuples, but with

named components. Like data types, Haskell records must be declared before they

can be used. For example, the declaration

data Person = Person { firstName :: String,

5.6 A Note on Reference Cells and Assignment 111

lastName :: String }

introduces the Person record type, which has two fields each with type string. Given

a record declaration, we can create values of the type Person by giving a value for

each field:

let dk = Person { firstName = "Donald", lastName = "Knuth" }

This Person record has two components, one called firstName and the other called

lastName.

Each field in a record declaration introduces an accessor function of the same

name. For example, we can use the firstName function to extract the corresponding

name from the dk person.

Prelude> firstName dk

"Donald"

it :: String

Another way of selecting components of tuples and records is by pattern matching.

For example, the following statement binds the variable f to the first name of dk

and l to the last name.

Prelude> let (Person {firstName = f, lastName = l }) = dk

f :: String

l :: String

5.6 A NOTE ON REFERENCE CELLS AND ASSIGNMENT

None of the Haskell constructs discussed in earlier sections of this chapter have side

effects. Each expression has a value, but evaluating an expression does not have

the side effect of changing the value of any other expression. Although most large

Haskell programs are written in a style that avoids side effects when possible, most

large Haskell programs do use assignment occasionally to change the value of a

variable.

The way that assignable variables are presented in Haskell is different from the

way that assignable variables appear in other programming languages. The main

reasons for this are to preserve the uniformity of Haskell as a programming language

and to separate side effects from pure expressions.

Haskell assignment is restricted to reference cells. In Haskell, a reference cell

has a different type than immutable values such as integers, strings, lists, and so

on. Because reference cells have specific reference types, restrictions on Haskell

112 Haskell

assignment are enforced as part of the type system. This is part of the elegance of

Haskell: Almost all restrictions on the structure of programs are part of the type

system, and the type system has a systematic, uniform definition.

We will discuss reference cells and other imperative features of Haskell in Chap-

ter 8.

5.7 CHAPTER SUMMARY

Haskell is a programming language that encourages programming with functions.

It is easy to define functions with function arguments and function return results.

In addition, most data structures in Haskell programs are not assignable. Although

it is possible to construct reference cells for any type of value and modify reference

cells by assignment, side effects occur only when reference cells are used. Although

most large Haskell programs do use reference cells and have side effects, the pure

parts of Haskell are expressive enough that reference cells are used sparingly.

Haskell has an expressive type system. There are basic types for many common

kinds of computable values, such as Booleans, integers, strings, and reals. There are

also type constructors, which are type operators that can be applied to any type.

The type constructors include tuples, records, and lists. In Haskell, it is possible to

define tuples of lists of functions, for example. There is no restriction on the types

of values that can be placed in data structures.

The Haskell type system is often called a strong type system, as every expression

has a type and there are no mechanisms for subverting the type system. When the

Haskell type checker determines that an expression has type Int, for example, then

any successful evaluation of that expression is guaranteed to produce an integer.

There are no dangling pointers that refer to unallocated locations in memory and no

casts that allow values of one type to be treated as values of another type without

conversion.

Haskell has several forms that allow programmers to define their own types and

type constructors. In this chapter, we looked at data-type declarations, which can

be used to define Haskell versions of enumerated types (types consisting of a finite

list of values), disjoint unions (types whose elements are drawn from the union of

two or more types), and recursively defined types. Another important aspect of

the Haskell type system is polymorphism, which we will study in the next chapter,

along with other aspects of the Haskell type system. We will discuss additional type

definition and module forms in Chapter ??.

EXERCISES

5.1 Algol 60 Procedure Types

In Algol 60, the type of each formal parameter of a procedure must be given. However,

proc is considered a type (the type of procedures). This is much simpler than the ML

types of function arguments. However, this is really a type loophole; because calls

to procedure parameters are not fully type checked, Algol 60 programs may produce

run-time type errors.

Write a procedure declaration for Q that causes the following program fragment to

produce a run-time type error:

Exercises 113

proc P (proc Q)

begin Q(true) end;

P(Q);

where true is a Boolean value. Explain why the procedure is statically type correct,

but produces a run-time type error. (You may assume that adding a Boolean to an

integer is a run-time type error.)

5.2 Algol 60 Pass-By-Name

The following Algol 60 code declares a procedure P with one pass-by-name integer

parameter. Explain how the procedure call P(A[i]) changes the values of i and A by

substituting the actual parameters for the formal parameters, according to the Algol

60 copy rule. What integer values are printed by tprogram? By using pass-by-name

parameter passing?

The line integer x does not declare local variables – this is just Algol 60 syntax

declaring the type of the procedure parameter:

begin

integer i;

integer array A[1:2];

procedure P(x);

integer x;

begin

i := x;

x := i

end

i := 1;

A[1] := 2; A[2] := 3;

P (A[i]);

print (i, A[1], A[2])

end

5.3 Nonlinear Pattern Matching

Haskell patterns cannot contain repeated variables. This exercise explores this lan-

guage design decision. A declaration with a single pattern is equivalent to a sequence

of declarations using destructors. For example,

p = (5,2)

(x,y) = p

is equivalent to

p = (5,2)

x = fst p

y = snd p

where fst p is the Haskell expression for the first component of pair p and snd simi-

larly returns the second component of a pair. The operations fst and snd are called

destructors for pairs.

A function declaration with more than one pattern is equivalent to a function decla-

ration that uses standard if-then-else and destructors. For example,

114 Haskell

f [] = 0

f (x:xs) = x

is equivalent to

f z = if z == [] then 0 else head z

where head is the Haskell function that returns the first element of a list.

Questions:

(a) Write a function that does not use pattern matching and that is equivalent to

f (x,0) = x

f (0,y) = y

f (x,y) = x + y

Haskell pattern matching is applied in order. When the function f is applied to

an argument (a, b), the first clause is used if b = 0, the second clause if b =// 0

and a=0, and the third clause if b =// 0 and a =// 0.

(b) Consider the following function:

eq(x,x) = True

eq(x,y) = False

Describe how you could translate Haskell functions that contain patterns with

repeated variables, like eq, into functions without patterns, using destructors and

if-then-else expressions. Give the resulting translation of the eq function.

(c) Why do you think the designers of Haskell prohibited repeated variables in pat-

terns? (Hint: If f, g :: Int -> Int, then the expression f == g is not type-

correct Haskell as the test for equality is not defined on function types.)

5.4 Haskell Map for Trees

(a) The binary tree data type

data Tree a = Leaf a | Node (Tree a) (Tree a)

describes a binary tree for any type, but does not include the empty tree (i.e.,

each tree of this type must have at least a root node).

Write a function maptree that takes a function as an argument and returns a

function that maps trees to trees by mapping the values at the leaves to new

values, using the function passed in as a parameter. In more detail, if f is a

function that can be applied to the leaves of tree t and t is the tree on the left,

then maptree f t should result in the tree on the right:

�
�
A
A

A
A

�
�

A
A

�
�

A
A

�
�

�
�

A
A

•

• •

• •

m i

l n

e r

�
�
A
A

A
A

�
�

A
A

�
�

A
A

�
�

�
�

A
A

•

• •

• •

f(m) f(i)

f(l) f(n)

f(e) f(r)

For example, if f is the function f x = x + 1 then

Exercises 115

maptree f (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

should evaluate to Node (Node (Leaf 2) (Leaf 3)) (Leaf 4). Explain your

definition in one or two sentences.

(b) What is the type Haskell gives to your function? Why is it not the type (t ->

t) -> Tree t -> Tree t?

5.5 Haskell Reduce for Trees

Assume that the data type tree is defined as in problem 4. Write a function

reduce :: (a -> a -> a) -> Tree a -> a

that combines all the values of the leaves by using the binary operation passed as a

parameter. In more detail, if oper :: a -> a -> a and t is the nonempty tree on the

left in this picture,

�
�
A
A

A
A

�
�

A
A

�
�

A
A

�
�

�
�

A
A

•

• •

• •

a b

c d

e f

�
�
A
A

A
A

�
�

A
A

�
�

A
A

�
�

�
�

A
A

oper

oper oper

oper oper

a b

c d

e f

then reduce oper t should be the result we obtain by evaluating the tree on the

right. For example, we can reduce an integer tree with the plus function:

reduce (+) (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

= (1 + 2) + 3

= 6

Explain your definition of reduce in one or two sentences.

5.6 Currying

This problem asks you to show that the Haskell types a -> b -> c and (a,b) -> c

are essentially equivalent.

(a) Define higher-order Haskell functions

curry :: ((a,b) -> c) -> (a -> (b -> c))

and

uncurry :: (a -> (b -> c)) -> ((a,b) -> c)

(b) For all functions f :: (a,b) -> c and g :: a -> (b -> c), the following two

equalities should hold (if you wrote the right functions):

uncurry(curry f) = f

curry(uncurry g) = g

Explain why each is true for the functions you have written. Your answer can be

three or four sentences long. Try to give the main idea in a clear, succinct way.

(We are more interested in insight than in number of words.) Be sure to consider

termination behavior as well.

5.7 Disjoint Unions

116 Haskell

A union type is a type that allows the values from two different types to be combined

in a single type. For example, an expression of type union(A, B) might have a value

of type A or a value of type B. The languages C and ML both have forms of union

types.

(a) Here is a C program fragment written with a union type:

...

union IntString {
int i;

char *s;

} x;

int y;

if (...) x.i = 3 else x.s = ‘‘here, fido’’;

...

y = (x.i) + 5;

...

A C compiler will consider this program to be well typed. Despite the fact that

the program type checks, the addition may not work as intended. Why not? Will

the run-time system catch the problem?

(b) In ML, a union type union(A,B) would be written in the form datatype UnionAB

= tag a of A | tag b of B and the preceding if statement could be written as

datatype IntString = tag int of int | tag str of string;

...

val x = if ...then tag int(3) else tag str(‘‘here, fido’’);

...

let val tag int (m) = x in m + 5 end;

Can the same bug occur in this program? Will the run-time system catch the

problem? The use of tags enables the compiler to give a useful warning message

to the programmer, thereby helping the programmer to avoid the bug, even before

running the program. What message is given and how does it help?

5.8 Lazy Evaluation and Functions

It is possible to evaluate function arguments at the time of the call (eager evaluation)

or at the time they are used (lazy evaluation). Most programming languages (including

ML) use eager evaluation, but we can simulate lazy evaluation in an eager language

such as ML by using higher-order functions.

Consider a sequence data structure that starts with a known value and continues with

a function (known as a thunk) to compute the rest of the sequence:

Prelude> datatype ’a Seq = Nil

| Cons of ’a * (unit -> ’a Seq);

Prelude> fun head (Cons (x,)) = x;

val head = fn : ’a Seq -> ’a

Prelude> fun tail (Cons (, xs)) = xs();

val tail = fn : ’a Seq -> ’a Seq

Prelude> fun BadCons (x, xs) = Cons (x, fn() =>xs);

Exercises 117

val BadCons = fn : ’a * ’a Seq -> ’a Seq

Note that BadCons does not actually work, as xs was already evaluated on entering

the function. Instead of calling BadCons(x, xs), you would need to use Cons(x, fn()

=>xs) for lazy evaluation.

This lazy sequence data type provides a way to create infinite sequences, with each

infinite sequence represented by a function that computes the next element in the

sequence. For example, here is the sequence of infinitely many 1s:

Prelude> val ones = let fun f() = Cons(1,f) in f() end;

We can see how this works by defining a function that gets the nth element of a

sequence and by looking at some elements of our infinite sequence:

Prelude> fun get(n,s) = if n=0 then head(s) else get(n-1,tail(s));

val get = fn : int * ’a Seq -> ’a

Prelude> get(0,ones);

val it = 1 : int

Prelude> get(5,ones);

val it = 1 : int

Prelude> get(245, ones);

val it = 1 : int

We can define the infinite sequence of all natural numbers by

Prelude> val natseq = let fun f(n)() = Cons(n,f(n+1)) in f(0) ()

end;

Using sequences, we can represent a function as a potentially infinite sequence of

ordered pairs. Here are two examples, written as infinite lists instead of as ML code

(note that ∼ is a negative sign in ML):

add1 = (0, 1) :: (∼ 1, 0) :: (1, 2) :: (∼ 2,∼ 1) :: (2, 3) :: . . .

double = (0, 0) :: (∼ 1,∼ 2) :: (1, 2) :: (∼ 2,∼ 4) :: (2, 4) :: . . .

Here is ML code that constructs the infinite sequences and tests this representation of

functions by applying the sequences of ordered pairs to sample function arguments.

Prelude> fun make ints(f)=

let

fun make pos (n) = Cons((n, f(n)), fn()=>make pos(n + 1))

fun make neg (n) = Cons((n, f(n)), fn()=>make neg(n - 1))

in

merge (make pos (0), make neg(∼1))

end;

val make ints = fn : (int -> ’a) -> (int * ’a) Seq

Prelude> val add1 = make ints (fn(x) => x+1);

val add1 = Cons ((0,1),fn) : (int * int) Seq

Prelude> val double = make ints (fn(x) => 2*x);

val double = Cons ((0,0),fn) : (int * int) Seq

Prelude> fun apply (Cons((x1,fx1), xs) , x2) =

if (x1=x2) then fx1

else apply(xs(), x2);

118 Haskell

val apply = fn : (’’a * ’b) Seq * ’’a -> ’b

Prelude> apply(add1, ∼4);

val it = ∼3 : int

Prelude> apply(double, 7);

val it = 14 : int

(a) Write merge in ML. Merge should take two sequences and return a sequence

containing the values in the original sequences, as used in the make ints function.

(b) Using the representation of functions as a potentially infinite sequence of ordered

pairs, write compose in ML. Compose should take a function f and a function g

and return a function h such that h(x) D f(g(x)).

(c) It is possible to represent a partial function whose domain is not the entire set

of integers as a sequence. Under what conditions will your compose function not

halt? Is this acceptable?

