
Lecture 22: OO Languages:
Smalltalk & C++

CSC 131
Spring, 2019

Kim Bruce

Smalltalk class
class name Point
super class Object
class var
instance var x y
class messages and methods
!...names and code for methods..."
 instance messages and methods
moveDx: dx Dy: dy ||
 x <- dx+x
 y <- dy + y
x
 ^ x
...

Commands

• Loops example:
1 to:10 do:[:i|
 Transcript show: (i asString).
].

• Conditional
- (x>0) ifTrue:[x:=x+1.] ifFalse:[x:=0].
- true and false are special values like
lambda calculus encodings

Run-time representations

2

3

class

x

y

Point object superclass
template
methods

x
y

Point class

Method dictionary
newX:Y:

...
move

code
code
code

Dynamic Method Invocation

• Start with object’s class and search up
superclasses.

• When call method inside, start search from self
again.

• Most other OO languages do not implement dmi in
this way -- too inefficient!

Key ideas of Smalltalk

• Everything is an object

• Information hiding - instance variables
protected.

• Dynamic typing, so subtyping determined by
whether can masquerade -- “message not
understood”

• Inheritance distinct from subtyping
removeFirst, removeLast, removeFirst:, and

removeLast: defined for Intervals.
removeFirst, removeLast, removeAtIndex:

and removeAllSuchThat: defined for LinkedList
after: and before: moved to SequenceableCol-

lection
addFirst:, addLast:, add:before:, add:after:,

addAllFirst:, addAllLast:, and add:beforeIndex:
canceled from SortedCollection.

5.2 Extending the Analysis
The process for analyzing class libraries can be

applied to other parts of the Smalltalk. One area that
would benefit from examination is the stream classes.
These classes are conceptually similar to collections,
but are implemented in an entirely different part of the
class system.

A Stream is a destination or source of values.
Streams are part of the collection classes but are not
well integrated with the other collections. This sec-
tion discusses how they could be unified with other
collections
ReadStream
Representation R : V*

isEmpty ρ = (#R = 0)

#R > 0 next R' = ρ•R

#R > 0 peek ρ = R[1]

The next method has the same specification as
the removeFirst method in OrderedCollection. The
fact that it removes the first element instead of the last
is merely an artifact of the specification; it is not vis-
ible to the client. Similarly, peek corresponds to the
first method.
WriteStream
Representation R : V*

nextPut: x R = R'•x

contents ρ = R

The method nextPut: has the same specification
as addLast: in OrderedCollection, but is indepen-
dent of the actual ordering used. Renaming the next-
Put: to be add: allows for more polymorphism;
WriteStream then conforms to ExtensibleCollec-
tion.

6 Interfaces Versus Inheritance
Figure 5 shows the Smalltalk inheritance hierar-

chy (in bold) superimposed on the protocol hierarchy
of Figure 4 (dotted lines). This is a concrete illustra-
tion of the difference, even at a syntactic level, be-
tween inheritance and conformance [CHC90, Syn-
der86]. There are two cases where the hierarchy and
protocol hierarchies are in direct conflict: Dictionary
and SortedCollection. Dictionary inherits from Set
but its protocol does not conform to Set’s. This is
because Dictionary cancels several of Set’s methods.
SortedCollection has a similar pattern of inheritance
without conformance.

Dictionary

Collection

Bag

Set

 Sequenceable
Collection

Mapped
Collection

 Array

Ordered
Collection

&
LinkedList

Sorted
Collection

Interval

Indexed
Collection

Updatable
Collection

Internally
Removable
Collection

Extensible
Collection

Poppable
Collection

 String

Figure 5: Interfaces versus Inheritance

Another significant deviation centers around Se-
quenceableCollect ion , which has inheritors
(subclasses) with various combinations of protocols
unrelated to SequenceableCollection. Some of the
subclasses (Array and String) are Updatable but not
Extensible, since they support at:put:. Other sub-
classes (LinkedList and SortedCollection) are Ex-
tensible but not Updatable, since they support add:.
A final one (OrderedCollection) is both Extensible
and Updatable. The abstract classes in Smalltalk
act as mixins for methods that depend upon a key
subclass responsibility method; to express this struc-

Smalltalk

C++

C++ Design Goals

• Data abstraction & OO features

• Better static type checking

• Backwards compatibility w/ C

• Efficiency: If you do not use a feature, you
should not pay for it

• Explicitly hybrid language -- C w/abstraction

Additions to C

• type bool

• reference types & call by reference

• user-defined overloading

• templates

• exceptions

• public or private inheritance

Problems

• Confusing casts and conversions

• Objects allocated on stack
- what happens w/subtyping? truncation!

• Overloading methods -- see earlier examples!

• Multiple inheritance (later)

Casts & Conversions

• Implicit conversions:
- from short to int

- class B { public: B (A a) {} }; A a; B b = a;
• Explicit conversions:
- C c; D* d; d = (D*) &c; d -> DonlyMeth();

• Try to avoid problems by using new casts:
- static_cast, dynamic_cast, reinterp_cast, const_cast
- dynamic_cast checks using run-time type info (RTTI)
- reinterp_cast trusts

Objects on stack

• Doesn’t interact well with subtyping.

• Point p; // allocates point on stack

• ColorPoint cp(3,4,blue);

• p = cp; // slices and converts to Point

• Call by value has similar problems

• What about reference parameters to methods?

OO Features in C++
• Visibility
- Public, protected, private

- Friends ...

• Virtual vs. nonvirtual functions
- don’t pay the price of dynamic method invocation

• Implemented via vtable
- no search necessary

- static typing makes efficient rep possible

- efficient iff subtype from inheritance!

VTable for Virtual methods

2
3

vptr
x
y

Point object Point vtable
getX

...
translate

code
code
code

2
3

red

vptr
x
y

color

ColorPoint object
ColorPoint vtable

getX
...

translate
getColor code

C++ vs Smalltalk implementation

• No search in C++ since offset for given method
same in base and derived classes

• Smalltalk has no type declaration
- value not known to be subtype of declared type

- no idea where method is located

Abstract classes

• Have at least one method undefined

• “Pure” leaves all undefined

• Can’t construct, but can inherit from

• Derived subclasses can be used as subtypes of
abstract base class.

Multiple Inheritance

• Appealing: TA derived from Student and
Teacher.

• Added to C++ and Smalltalk. In Eiffel from
beginning.

• Problems conceptually and with
implementation

MI in C++
class S {...}
class T{...}
class TA: public S, public T
{...}

TA* pta = new TA();
S * ps = pta;
T * pt = pta;

Representing MI

...

...

vptr
S data
vptr

T data
TA data

TA object TA as S vtable
code
code

TA as T vtable
code
code
code

ps,pta

pt

What if T and TA both define virtual f?
T methods expect inst vbles starting at pt
How get access to instance vbles from S?

Conceptual Problems w/ MI

A

B C

D

Diamond Inheritance: Suppose A has virtual f
and B and C override it.

Which version is inherited in D?

Java Solution

• Most multiple inheritance in C++ involves pure
base classes.

• Java: Single inheritance, but can implement
multiple interfaces.

• Avoids problems.

• Traits (e.g., in Scala) are modern alternative.

C++ Summary

• One of most complicated languages ever
- design by accretion

• Meets design goals but very hard to get right
- “C makes it easy to shoot yourself in the foot. In C++

it's harder to shoot yourself in the foot, but when you
do, you blow off your whole leg.” -- Stroustrup

• Memory management is big problem
• Most programmers learn a subset.

C++ Humor

• C++: Hard to learn and built to stay that way.
• Java is, in many ways, C++--.
• How C++ is like teenage sex:

1. It is on everyone's mind all the time.2. Everyone talks about it all the time.3. Everyone thinks everyone else is doing it.
4.Almost no one is really doing it.5. The few who are doing it are: A. Doing it poorly. B. Sure it will be better next time. C. Not practicing it safely.

Java

Java Design Goals

• Portability across platforms

• Reliability

• Safety (no viruses!)

• Dynamic Linking

• Multithreaded execution

• Simplicity and Familiarity

• Efficiency

Java
• Original implementations slow
- Compiled to JVML and then interpreted

- Now JIT

- Garbage collection

• Safety - 3 levels:
- Strongly typed

- JVML bytecode also checked before execution

- Run-time checks for array bounds, etc.

• Other safety features:
- No pointer arithmetic, unchecked type casts, etc.

- Super constructor called at beginning of constructor

Exceptions & Subtyping

• All non-Runtime exceptions must be caught or
declared in “throws” clauses
- void method readFiles() throws IOException {...}

• Suppose m throws NewException.

• What are restrictions on throwing exceptions
if m overridden in subclass? Masquerade!

Simplify from C++
• Purely OO language (except for primitives)

• All objects accessed through pointers
- reference semantics

• No multiple inheritance -- trade for interfaces

• No operator overloading

• No manual memory management

• No automatic or unchecked conversions

Interfaces

• Originally introduced to replace multiple
inheritance

• Allows pure use of subtype polymorphism w/
out confusing with implementation reuse.

• Slower access to methods as method order not
guaranteed

Encapsulation
• Classes & interfaces can belong to packages:

package MyPackage;

public class C ...

• If no explicit package then in “default” package

• public, protected, private, “package” visibility

• Class-based privacy (not object-based):
- If method has parameter of same type then get access

to privates of parameter

Problems w/Packages
• Generally tied to directory structure.

• Anyone can add to package and get privileged
access

• All classes/interfaces w/out named package in
default package (so all have access to each
other!)

• No explicit interface for package

• Abstraction barriers not possible for interfaces.
Discourages use of interfaces for classes.

