Lecture 20: Subtyping & OO
Languages

CSC 131
Spring, 2019

Kim Bruce

Subtyping

¢ Can be added to non-OO languages

* Matching structures and signatures similar

- but more restricted.

e Provides support for using values from new
types in old (unexpected) contexts

Subtype Polymorphism

S is asubtype of T, written S <: T,
if

a value of type S can be used in any context
expecting a value of type T,

ie., S can masquerade as a1,

Subsumption: e:S & S<:T = e:T.

Immutable Records

Records without field update (like Haskell/ML):
Sandwich = {bread: BreadType;
filling: FoodType }
s: Sandwich = { bread = rye;
filling = pastrami }
Only operation is extracting field:
.. s.filling ...

Specializing Record Types

CheeseSandwich = {bread: BreadType;
filling: CheeseType;

sauce: SauceType}

c_s: CheeseSandwich = {bread = white;
filling = cheddar;

sauce = mustard}

Subtyping Immutable Records

If o:{L:T,} ,

I<1<

. then expectr.] :T.

Suppose r:{1: T’} ...
When can t’ masquerade as elt of {1: T, },_,., ?

Need 'l :T.

Masquerading

Ik |3l

Ty Ty T3 T4
[T [
I T, T3

i
k<nandforalli<is<k, T <T.

Functions

If f:S—Tand s:Sthen f(s): T
WhenisS = T < S— T?
If £:S—=7T, needf’ (s): T

Subtyping Functions

S & [TrT

§—=T «:S§—=T
ift
S<:Sand T <:'T.

Variables

Variables can be suppliers & receivers of values.
Xi=X+1

If x is a variable of type T, write x: ref'T.

When is ref T’ <: ref T?

To replace variable x: ref T by x": refT"in:

- expression: ... X ...
. Need T'<: T
Contravariant for parameter types. .
. - assignment: x:=e where e:'T.
Covariant for result types.
Need T<: T
Variables Exercises
1. Updatable Records:
[T =T *
X
r— T
val

Supplier: covariant;

Receiver: contravariant

ref T'<: ref T iff T'=T

<<<<<<<<

. rl:=e..

More Exercises

Arrays:
* If S<: T, is Array of S <: Array of T?

Java says yes, but ...

not safe!

With few exceptions, for F: Types —Types,
S <: T4 F(S) <: F(D).

Object-Oriented Languages

Roots in ADT Languages

* Ada and Modula-2 internal reps

- couldn’t be instantiated dynamically

- no type or other method of organizing, despite similarity to
records

- provide better modules for building large systems

* Called object-based

Responding to the
“SOFTWARE CRISIS!?”

Qualities Desired in Software

¢ Correctness
* Robustness
* Extensibility _Almost all supported by ADT'
e Reusability

* Compatibility

Object-Oriented Languages

* Objects that are data abstractions

* Objects have associated object type (classes or
interfaces)

* Classes may 7nberst attributes from superclass
e Computations proceed by sending messages
* Subtype polymorphism

e Support dynamic method invocation

Programming Objects in ML

exception Empty;
fun newStack(x) =
let
val store = ref [x]
in
{push = fn y => store := y::(!store);
pop = fn z => case !store of

1= ys; Y)

Parameter z ignored, used
to delay evaluation

val myStack = newStack(0);
really parameterless function

#push (myStack) (1);
#pop (myStack) ();

Weakness of ML

* No subtyping
* No this/self
¢ No inheritance

* Similar issues in trying to do objects in LISP or other
functional languages.

e Haskell doesn’t have state!

OO Keywords

o Object
o Message
o Class

e Instance
e Method
* Subtype

e Subclass

Objects

¢ Internal data abstractions
 Hide representation

* Have associated state

e Methods have access to its state

e Self

Object Types

* Allow objects to be first class

e Allow use in assignment, parameters,
components of structures

 Allow objects to be classified via subtyping

