
Lecture 1: Overview
CSC 131

Spring, 2019

Kim Bruce

Do Languages Matter?

• Why choose C vs C++ vs Java vs Python ...

• What criteria to decide?

• Scenarios:

- iOS app

- Android App

- Web App

- Mac App

- Windows app

- System software

- Scientific App

- Scripting

Do Languages Matter?

• Impact on programming practice

• SIGPLAN Education Board documents

Provide Abstractions

• Data Abstractions:

- Basic data types: ints, reals, bools, chars, pointers

- Structured: arrays, structs (records), objects

- Units: Support for ADT’s, modules, packages

• Control Abstractions:

- Basic: assignment, goto, sequencing

- Structured: if...then...else, loops, functions

- Parallel: concurrent tasks, threads, message-passing

PL’s & Software Development

• Development process:

- requirements

- specification

- implementation

- certification or validation

- maintenance

• Evaluate languages based on goals

Goals of Some older PL’s

• Languages & their goals:

- BASIC - quick development of interactive programs

- Pascal - instruction

- C - low-level systems programming

- FORTRAN, Matlab - number-crunching scientific

• What about large-scale programs?

- Ada, Modula-2, object-oriented languages

PL Choice

• Languages designed to support specific
software methodologies.

• Language affect way people think about
programming process.

• Hard for people to change languages if requires
different way of thinking about process.

- Easier to make switch when younger!

Paradigms
or whatever you want to call them

• Not crisp boundaries

- Procedural

- Functional

- Logic or Constraint-programming

- Object-oriented

History of PL’s

• Machine language  
 ⇒ Assembly language  
 ⇒ High-level language

• Single highly-trained programmer  
 ⇒ Teams of programmers

History of PLs

Newer: Scala, Dart, Rust, NewSpeak, Swift, Grace, Pyret

Objective C

ve C

Javascript

Scheme

Self

Extreme Languages

• APL (Used at Pomona in 1970’s)

- Everything is a vector

- SD←((+/((X - AV←(T←+/X)÷⍴X)*2))÷⍴X)*0.5

- calculates average (AV) and standard deviation of X

• COBOL

- Calculate largest number

WORKING-STORAGE SECTION.
 77 A PIC 9(4).
 77 B PIC 9(4).
 77 C PIC 9(4).
 77 LARGE PIC 9(4).
\PROCEDURE DIVISION.
 ACCEPT-PARA.
 DISPLAY "ENTER THREE NUMBERS".
 ACCEPT A.
 ACCEPT B.
 ACCEPT C.
 COMPUTE-PARA.
 IF A>B AND A>C THEN MOVE A TO LARGE.
 IF B>C AND B>A THEN MOVE B TO LARGE.
 IF C>B AND C>A THEN MOVE C TO LARGE.
 DISPLAY-PARA.
 DISPLAY "LARGEST NUMBER=" LARGE.
STOP RUN.

Course Goals

• Upon completion of course should be able to:

- Quickly learn programming languages, & how to
apply them to effectively solve programming
problems.

- Rigorously specify, analyze, & reason about the
behavior of a software system using a formally
defined model of the system’s behavior.

- Realize a precisely specified model by correctly
implementing it as a program, set of program
components, or a programming language.

Course Goals

• Plus:

- Understand the principal underlying differences in
program languages, why those differences occur, and
how that affects the semantics of the languages.

- Understand contemporary trends in the design of
programming languages.

- Understand the run-time behavior of programs,
especially as it relates to memory management using
the run-time stack and heap.

Administrivia

• Web page at

- http://www.cs.pomona.edu/classes/cs131/

• Text by Mitchell:

- Free!

- Use some revised chapters: Haskell instead of SML

• If needed, get account from Corey LeBlanc

Administrivia

• Homework

- Generally due every week on Thursday night.
• Posted on Friday

- All homework must be turned in electronically
• Use LaTeX’ed, but can scan in pictures

• ... but must be legible!!

On-Line Discussions

• Will be on Piazza

• You will receive an invitation later this week.

- Do not throw it away!

• You can ask and answer questions on-line.

- TA’s and I will monitor and respond.

Course Outline

• Functional programming (Haskell)

- Good example of lazy functional language

- use in implementing parsers, interpreters, etc.

• Lambda calculus

- Simple model of language, easier to work on theory

• Implementing parsers/interpreters

Course Outline (continued)

• Run-time behavior of programs

- Memory management

• Types and control constructs

• Data abstraction and modules

• Object-oriented languages

• Parallelism/Concurrency

Computability

• Halting Problem in your favorite language:

- There is no program H that will, for any other
program P, always accurately determine whether or
not P will halt.

• Rice’s Theorem: Any interesting question
about programs is undecidable. (Syntax
questions aren’t interesting.)

• This will place limits on static checking of
programs (e.g., type-checking)

Infinity

• How many programs can be written in Java

- Countably infinite

• How many functions are there from Strings to
Strings?

- Uncountably infinite

- So most functions are not computable!

Haskell

According to Larry Wall
(designer of PERL):  

… a language by geniuses
for geniuses

He’s wrong — at least about the latter part
though you might agree when we talk about monads

Haskell 98

• Purely functional

• Functions are first-class values

• Statically scoped

• Strong, static typing via type inference
- Type-safe

• Parametric polymorphism

• Type classes

Haskell (cont)

• Rich type system including support for ADT’s

• Non-strict (lazy) evaluation

• Imperative features emulated using monads.

• Garbage collection

• Compiled or interpreted.

• Named after Haskell Curry -- early contributor
to lambda calculus and combinatory logic

Read Haskell Tutorials

• All on links page from course web page

• I like “Learn you a Haskell for greater good”

• O’Reilly text: “Real World Haskell” free on-line

• Print Haskell cheat sheet

• Use “The Haskell platform”, available at
- http://www.haskell.org/

Using GHC

• to enter interactive mode type: ghci
- :load myfile.hs -- :l also works

- after changes type :reload

- Control-d to exit

- :set +t -- prints more type info when interactive

- “it” is result of expression

- Evaluate “it + 1” gives one more than previous
answer.

Built-in data types
• Unit has only ()

• Bool: True, False with not, &&, ||

• Int: 5, -5, with +, -, *, ^, =, /=, <, >, >=, ...
- div, mod defined as prefix operators (`div` infix)

- Int fixed size (usually 64 bits)

- Integer gives unbounded size

• Float, Double: 3.17, 2.4e17 w/ +, -, *, /, =, <, >, >=,
<=, sin, cos, log, exp, sqrt, sin, atan.

More Basic Types

• Char: ‘n’

• String = [Char], not really primitive
- "hello"++" there", length

- No substring, but `isInfixOf` for all lists

- Also ‘isPrefixOf`, `isSuffixOf ’

• Type classes (later) provide relations between
classes.

Prefix op w/out ``!

import Data.List

list of Char

Interactive Programming
with ghci

• Type expressions and run-time will evaluate

• Define abbreviations with “let”
- let double n = n + n

- let seven = 7

• “let” not necessary at top level in programs
loaded from files

Lists

• Lists
- [2,3,4,9,12]: [Integer]

- [] -- empty list

- Must be homogenous

- Functions: length, ++, :, map, rev

• also head, tail, but normally don’t use!

Polymorphic Types

• [1,2,3]:: [Integer]

• [“abc”, “def”]:: [[Char]], ...

• []:: [a]

• map:: (a → b) → ([a] → [b])

• Use :t exp to get type of exp

Pattern Matching

• Decompose lists:
- [1,2,3] = 1:(2:(3:[]))

• Define functions by cases using pattern
matching:

prod [] = 1  
prod (fst:rest) = fst * (prod rest)

Pattern Matching

• Desugared through case expressions:
- head' :: [a] -> a  

head' [] = error "No head for empty lists!"  
head' (x:_) = x

• equivalent to
- head' xs = case xs of  

 [] -> error "No head for empty lists!"  
 (x:_) -> x  

Type constructors

• Tuples
- (17,”abc”, True) : (Integer , [Char] , Bool)

- fst, snd defined only on pairs

• Records exist as well

More Pattern Matching

• (x,y) = (5 `div` 2, 5 `mod` 2)

• hd:tl = [1,2,3]

• hd:_ = [4,5,6]
- “_” is wildcard.

Static Typing

• Strongly typed via type inference
- head:: [a] → a 

 tail:: [a] → [a]

- last [x] = x 
last (hd:tail) = last tail

• System deduces most general type, [a] -> a
- Look at algorithm later 

Static Scoping

• What is the answer?
- let x = 3
- let g y = x + y- g 2- let x = 6
- g 2

• What is the answer in original LISP?
- (define x 3)
- (define (g y) (+ x y))- (g 2)- (define x 6)
- (g 2)

Static Scoping

• What is the answer?
- let x = 3- let g y = x + y
- g 2- let x = 6- g 2

{
 const x = 3
 {
 g(y) = x + y
 {
 print (g 2)
 const x = 6

 {
 print (g 2)
 }
 }
 }
}

• What is the answer in original LISP?
- (define x 3)- (define (g y) (+ x y))- (g 2)
- (define x 6)- (g 2)

Local Declarations
roots (a,b,c) =
 let -- indenting is significant
 disc = sqrt(b*b-4.0*a*c)
 in
 ((-b + disc)/(2.0*a),(-b - disc)/(2.0*a))

*Main> roots(1,5,6)
(-2.0,-3.0)
or
roots' (a,b,c) = ((-b + disc)/(2.0*a),  
 (-b - disc)/(2.0*a))
 where disc = sqrt(b*b-4.0*a*c)

Anonymous functions

• dble x = x + x

• abbreviates

• dble = \x -> x + x

Defining New Types

• Type abbreviations
- type Point = (Integer, Integer)

- type Pair a = (a,a)

• data definitions
- create new type with constructors as tags.

- generative

• data Color = Red | Green | Blue
See more complex examples later

Type Classes Intro
• Specify an interface:
- class Eq a where  

 (==) :: a -> a -> Bool -- specify ops 
 (/=) :: a -> a -> Bool  
 x == y = not (x /= y) -- optional implementations 
 x /= y = not (x == y)

- data TrafficLight = Red | Yellow | Green  
instance Eq TrafficLight where  
 Red == Red = True  
 Green == Green = True  
 Yellow == Yellow = True  
 _ == _ = False

Common Type Classes

• Eq, Ord, Enum, Bounded, Show, Read
- See http://www.haskell.org/tutorial/stdclasses.html

• data defs pick up default if add to class:
- data ... deriving (Show, Eq)

• Can redefine:
- instance Show TrafficLight where  

 show Red = "Red light"  
 show Yellow = "Yellow light"  
 show Green = "Green light"

More Type Classes
• class (Eq a) => Num a where ...
- instance of Num a must be Eq a

• Polymorphic function types can be prefixed w/
type classes
- test x y = x < y has type (Ord a) => a -> a -> Bool

- Can be used w/ x, y of any Ord type.

• More later ...
- Error messages often refer to actual parameter needing to be

instance of a class -- to have an operation.

Higher-Order Functions
• Functions that take function as parameter
- Ex: map:: (a → b) → ([a] → [b])

• Build new control structures
- listify oper identity [] = identity  

listify oper identity (fst:rest) =  
 oper fst (listify oper identity rest)  

- sum' = listify (+) 0 
mult' = listify (*) 1 
and' = listify (&&) True 
or' = listify (||) False

Exercise

• Is listify left or right associative?

- What is listify (-) 0 [3,2,1]? 2 or -6 or 0 or ???

• How can we change definition to associate the
other way?

See built-in foldl and foldr

Quicksort
partition (pivot, []) = ([],[])
partition (pivot, first : others) =
 let
 (smalls, bigs) = partition(pivot, others)
 in
 if first < pivot
 then (first:smalls, bigs)
 else (smalls, first:bigs)

Type is:

partition :: (Ord a) => (a, [a]) -> ([a], [a])

Quicksort
qsort [] = []
qsort [singleton] = [singleton]
qsort (first:rest) =
 let

 (smalls, bigs) = partition(first,rest)
in
 qsort(smalls) ++ [first] ++ qsort(bigs)

Type is:

qsort :: (Ord t) => [t] -> [t]

Quicksort - parametrically
partition (pivot, []) lThan = ([],[])
partition (pivot, first : others) lThan =
 let
 (smalls, bigs) = partition(pivot, others) lThan
 in
 if (lThan first pivot)
 then (first:smalls, bigs)
 else (smalls, first:bigs)

partition ::
 (t, [a]) -> (a -> t -> Bool) -> ([a], [a])

*Main> partition(6,[8,4,6,3])(>)

Quicksort
qsort [] lt = []
qsort [singleton] lt = [singleton]
qsort (first:rest) lt =
 let
 (smalls, bigs) = partition (first,rest) lt
 in
 qsort smalls lt ++ [first]
 ++ qsort bigs lt

qsort :: [a] -> (a -> a -> Bool) -> [a]

*Main> qsort [33,66,32,87,999,2](>)
[999,87,66,33,32,2]

Recursive Datatype Examples

• data IntTree = Leaf Integer |  
 Interior (IntTree,IntTree)  
 deriving Show
- Example values: Leaf 3, Interior(Leaf 4,Leaf -5), ...

• data Tree a = Niltree |  
 Maketree (a, Tree a, Tree a)

Binary Search Using Trees

insert new Niltree = Maketree(new,Niltree,Niltree)
insert new (Maketree (root,l,r)) =
if new < root
 then Maketree (root,(insert new l),r)
 else Maketree (root,l,(insert new r))

buildtree [] = Niltree
buildtree (fst : rest) =
 insert fst (buildtree rest)

Binary Search Tree

find elt Niltree = False
find elt (Maketree (root,left,right)) =
if elt == root

 then True
 else if elt < root then find elt left
 else find elt right -- elt > root

bsearch elt list = find elt (buildtree list)

Haskell is Lazy!

Lazy vs. Eager Evaluation

• Eager: Evaluate operand, substitute operand
value in for formal parameter, and evaluate.

• Lazy: Substitute operand for formal parameter
and evaluate body, evaluating operand only
when needed.
- Each actual parameter evaluated either not at all or

only once! (Essentially cache answer once computed)

- Like left-most outermost, but more efficient

Lazy evaluation

• Compute f(1/0,17) where f(x,y) = y

• Computing head(qsort[5000,4999..1]) is faster
than qsort[5000,4999..1]

• Compare time of computations of:
- fib 32

- dble (fib 32) where dble x = x + x

• Computations based on graph reduction
- like tree rewriting, except w/computation graphs - sharing

Lazy Lists
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fibList = f 1 1
where f a b = a : f b (a+b)

fastFib n = fibList!!n

fibs = 1:1:[a+b | (a,b) <- zip fibs (tail fibs)]

primes = sieve [2..]
 where
 sieve (p:x) = p :
 sieve [n | n <- x, n `mod` p > 0]

complexity O(fib n) ~ O(2n)

complexity O(n)

Call-by-need

• Efficient implementation of call-by-name
(Algol 60)

• If purely functional language then may evaluate
expression at most once, because can never
change.

• Hence graph instead of tree works!
- dble(fib 32)

