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Abstract

Functional programming may be beautiful, but to write regdlecations we must grapple
with awkward real-world issues: input/output, robustpesscurrency, and interfacing to
programs written in other languages.

These lecture notes give an overview of the techniques that heen developed by the
Haskell community to address these problems. | introduc®ws proposed extensions to

Haskell along the way, and | offer an operational semankias éxplains what these exten-
sions mean.

This tutorial was given at the Marktoberdorf Summer Sch@a® It will appears in the
book“Engineering theories of software construction, Marktad@f Summer School 2000”
ed CAR Hoare, M Broy, and R Steinbrueggen, NATO ASI Serie§ Rdess, 2001, pp47-96.

This version has a few errors corrected compared with théighga version. Change
summary:

e Feb 2008: Fix typo in Section 3.5

e May 2005: Section 6: correct the way in which the FFI declaresmported function
to be pure (nodnsaf e” necessary).

e Apr 2005: Section 5.2.2: some examples added to clanfgl uat e.
e March 2002: substantial revision



1 Introduction

There are lots of books about functional programming in [dd$&4, 14, 7]. They tend to con-
centrate on the beautiful core of functional programmirighlr order functions, algebraic data
types, polymorphic type systems, and so on. These lectues aoe about the bits that usually
aren’'t written about. To write programs that ansefulas well asbeautiful the programmer
must, in the end, confront the Awkward Squad, a range of wnHifel but crucial issues, gener-
ally concerning interaction with the external world:

¢ Input and output.

e Error detection and recovery; for example, perhaps therpmghould time out if some-
thing does not happen in time.

e Concurrency, when the program must react in a timely waydependent input sources.

¢ Interfacing to libraries or components written in some otaaguage.

The call-by-value (or strict) family of functional langueghave generally taken a pragmatic
approach to these questions, mostly by adopting a similaroagh to that taken by imperative
languages. You want to print something? No problem; wedt juave a functiopr i nt Char
that has the side effect of printing a character. Of coygsent Char isn't really a function any
more (because it has a side effect), but in practice thisogmbr works just fine, provided you
are prepared to specify order of evaluation as part of thgulage design — and that is just what
almost all other programming languages do, from FORTRANJawa to mostly-functional ones
like Lisp, and Standard ML.

Call-by-need (or lazy) languages, such as Haskell, weair alia because their evaluation order
is deliberately unspecified. Suppose that we were to extaaskeéll by adding side-effecting
“functions” such agr i nt Char . Now consider this list

Xs = [printChar "a', printChar 'b’]

(The square brackets and commas denote a list in Haskell.at WA earth might this mean?
In SML, evaluating this binding would pririta’ followed by’ b’ . But in Haskell, the calls
to pri nt Char will only be executed if the elements of the list are evaldateor example, if
the only use ofks is in the call( | engt h xs), then nothing at all will be printed, because
| engt h does not touch the elements of the list.

The bottom line is thalizinessandside effectare, from a practical point of view, incompatible.
If you want to use a lazy language, it pretty much has to paralyfunctional language; if you
want to use side effects, you had better use a strict language

For a long time this situation was rather embarrassing ferldzay community: even the in-
put/output story for purely-functional languages was waakl unconvincing, let alone error
recovery, concurrency, etc. Over the last few years, a simgrsolution has emerged: the



monad. | say “surprising” because anything with as exotiam& as “monad” — derived from
category theory, one of the most abstract branches of maities— is unlikely to be very

useful to red-blooded programmers. But one of the joys oftional programming is the way
in which apparently-exotic theory can have a direct andtpalcapplication, and the monadic
story is a good example. Using monads we have found how totateiprograms that perform
input/output so that we can, in effect, do imperative pragrang where that is what we want,
and only where we want. Indeed, th® monad is the unifying theme of these notes.

The “standard” version of Haskell is Haskell 98, which comath an 1/O library that uses the
monadic approach. However, Haskell 98 is not rich enougle&d @ith the rest of the Awkward
Squad (exceptions, concurrency, etc), so we have extenedskleH 98 in a number of experi-
mental ways, adding support for concurrency [35], excewsti®7, 29], and a foreign-language
interface [36, 11]. So far, these developments have mostybocumented in scattered research
papers; my purpose in these lectures is to gather some afdther into a coherent account. In
what follows, when | refer to “Haskell”, | will always mean Bleell 98, rather than earlier ver-
sions of the language, unless otherwise specified.

As a motivating example, we will explore the issues involiredriting a web server in Haskell.
It makes an interesting case study because it involves enember of the Awkward Squad:

It is I/O intensive.

It requires concurrency.

It requires interaction with pre-existing low-level I/iaries.

It requires robustness. Dropped connections must timeitouyst be possible to recon-
figure the server without dropping running connectiongmsrmust be logged.

The Haskell web server we use as a case study is remarkalhj2ijalt uses only 1500 lines of
Haskell to implement (more than) the HTTP/1.1 standard rbbust enough to run continuously
for weeks at a time, and its performance is broadly comparafith the widely-used Apache
server. Apache handles 950 connections/sec on the maclines&d, while the Haskell web
server handles 700 connections/sec. But this is a bit of ptesfand-oranges comparison: on
the one hand Apache has much more functionality while, orother, the Haskell web server
has had very little performance tuning applied.

| began this introduction by saying that we must confrontAtvkward Squad if we are to write
useful programs. Does that mean that useful programs area@R You must judge for your-
self, but | believe that the monadic approach to programmimgvhich actions are first class
values, is itself interesting, beautiful, and modular. hiors, Haskell is the world’s finest imper-
ative programming language.
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Figure 1: The stream 1/0O model

2 Input and output

The first member of the Awkward Squad is input/output, andithevhat we tackle first.

2.1 The problem

We begin with an apparently fundamental conflict. A purelgpdiional program implements
a function it has no side effect. Yet the ultimate purpose of running@mm is invariably
to cause some side effect: a changed file, some new pixelseosctieen, a message sent, or
whatever. Indeed it's a bit cheeky to call input/output “avekkd” at all. 1/O is the raison d’étre
of every program. — a program that had no observable effeatsoever (no input, no output)
would not be very useful.

Well, if the side effect can’'t be in the functional prograrmwill have to be outside it. For
example, perhaps the functional program could be a functiapping an input character string
to an output string:

main :: String -> String

Now a “wrapper” program, written in (gasp!) C, can get an inpuing from somewhere (a
specified file, for example, or the standard input), applyftieetion to it, and store the result
string somewhere (another file, or the standard output). f@ational programs must remain
pure, so we locate all sinfulness in the “wrapper”.

The trouble is that one sin leads to another. What if you wargad more than one file? Or write
more than one file? Or delete files, or open sockets, or sleepdpecified time, ...? The next
alternative, and one actually adopted by the first versidtaskell, is to enrich the argument and
result type of the main function:

main :: [Response] -> [Request]

Now the program takes as its argument a (lazy) lifRe$ ponse values and produces a (lazy)
list of Request values (Figure 1). Informally & quest says something like “please get
the contents of filé et ¢/ not d”, while a Response might say “the contents you wanted is



No enmil today”. More concretelyRequest andResponse are both ordinary algebraic
data types, something like this:

type FilePath = String

ReadFil e Fil ePath

dat a Request =
| WiteFile FilePath String
I

dat a Response Request Fai | ed
ReadSucceeded String

I
| WiteSucceeded
I

There is still a wrapper program, as before. It repeatedgda request off the result list, acts
on the request, and attaches an appropriate response t@timemnt list. There has to be some
clever footwork to deal with the fact that the function had®applied to a list of responses
before therare any responses in the list, but that isn’t a problem in a lazyrge

This request/response story is expressive enough thatsitadapted as the main input/output
model in the first version of Haskell, but it has several disfec

e It is hard to extend. New input or output facilities can be edldnly by extending the
Request andResponse types, and by changing the “wrapper” program. Ordinary
users are unlikely to be able to do this.

e There is no very close connection between a request andrissponding response. It is
extremely easy to write a program that gets one or more “ostegf”.

e Even if the program remains in step, it is easy to accidgnéathluate the response stream
too eagerly, and thereby block emitting a request until #sponse to that request has
arrived — which it won't.

Rather than elaborate on these shortcomings, we move swiftto a better solution, namely

monadic 1/Q Hudak and Sundaresh give a useful survey of approachesetygunctional in-
put/output [15], which describes the pre-monadic statdaf.p

2.2 Monadic I/O

The big breakthrough in input/output for purely-functibtenguages came when we learned
how to use so-callethonadsas a general structuring mechanism for functional progratese

is the key idea:

A value of typel O a is an “action” that, when performed, may do some in-
put/output, before delivering a value of type
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This is an admirably abstract statement, and | would not berised if it means almost nothing
to you at the moment. So here is another, more concrete waykiilg at these “actions”:

type 10a = Wrld -> (a, Wrld)

This type definition says that a value of typ® a is a function that, when applied to an argu-
ment of typeWor | d, delivers a new\r | d together with a result of typa. The idea is rather
program-centric: the program takes the state of the entrkdvas its input, and delivers a mod-
ified world as a result, modified by the effects of running thegpam. | will say in Section 3.1
why | don’t think this view ofl O actions as functions is entirely satisfactory, but it gates
many of the right intuitions, so | will use it unashamedly éowhile. We may visualise a value
of typel O a like this:

result:a

4
IO a

World in —p —» World out

TheWor | d is fed in on the left, while the neWr | d, and the result of typa, emerge on the
right. In general, we will call a value of tydeO a anl/O actionor justaction In the literature
you will often also find them calledomputations

We can givd Otypes to some familiar operations, which are supplied anifivie:

getChar :: 10 Char
put Char :: Char -> 10 ()

get Char is an I/O action that, when performed, reads a character fre@mstandard input
(thereby having an effect on the world outside the progranyl returns it to the program as
the result of the actiomput Char is a function that takes a character and returns an action tha
when performed, prints the character on the standard o(itpeffect on the external world), and
returns the trivial valué ) . The pictures for these actions look like this (the boxgat Char
takes an extra input for théhar argument):

Char Char 0
getChar L putChar
—P —» —P —»
getChar :: IO Char putChar :: Char->10 ()

Suppose we want to read a character, and print the charaeteave read. Then we need to glue
togethemput Char andget Char into a compound action, like this:



gl

getChar putChar
— P P >

getChar >>= putChar

To achieve this we use a glue function, or combinator, alsgiged as primitive:
(>>=) :: 10a->(a->10b) ->10D

echo :: 10 ()
echo = get Char >>= put Char

The combinatof >>=) is often pronounced “bind”. It implements sequential cosifpon: it
passes the result of performing the first action to the (patensed) second action. More pre-
cisely, when the compound actigra >>= f) is performed, it performs actioa, takes the
result, applie$ to it to get a new action, and then performs that new actiothéecho exam-
ple, (get Char >>= put Char) first performs the actioget Char , yielding a charactet,
and then performput Char c.

Suppose that we wanted to performcho twice in succession. We can't say
(echo >>= echo), becausd >>=) expects d&unctionas its second argument, not an ac-
tion. Indeed, we want to throw away the resql},, of the firstecho. It is convenient to define
a second glue combinatdr>>) , in terms of the first:

(>>) :: 10a->10b ->10b

(>>) al a2 = al >>= (\x -> a2)
The term(\ x -> a2) is Haskell's notation for a lambda abstraction. This pattic abstrac-
tion simply consumes the argumenxt,throws it away, and returree2. Now we can write

echoTwice :: 10 ()
echoTwi ce = echo >> echo

“(>>) " is often pronounced “then”, so we can read the right hand asl'echo thenecho”.

In practice, it is very common for the second argument{ 8$=) to be an explicit lambda
abstraction. For example, here is how we could read a clearact! print it twice:

echoDup :: 10 ()

echoDup = getChar >>= (\c -> (putChar c¢ >> putChar c))
All the parentheses in this example are optional, becauambda abstraction extends as far to
the right as possible, and you will often see this laid ou lifis:

echoDup :: 10 ()

echoDup = get Char >>=\c ->

put Char ¢ >>



put Char c

The fact that this looks a bit like a sequence of imperatiteas is no coincidence — that is
exactly what we wish to specify. Indeed, in Section 2.3 wéiwitoduce special syntax to mirror
an imperative program even more closely.

How could we write an I/O action that reads two characterd,raturns both of them? We can
start well enough:

get TwoChars :: 10O (Char, Char)

get TwoChars = get Char >>= \cl ->
get Char >>= \c2 ->
?7?7?

But what are we to put for the???” part? It must be of typé O ( Char, Char), but we have
done all the input/output required. What we need is one mongbnator:

return :: a ->10a

The action(return v) is an action that does no I/O, and immediately retwnaithout
having any side effects. We may draw its picture like this:

a a
A
return
>
Now we can easily completget TwoChar s:
get TwoChars :: 10O (Char, Char)
get TwoChars = get Char >>= \cl ->

get Char >>= \c2 ->
return (cl,c2)

Here is a more realistic action that reads a whole line oftnpu

getLine :: 10 [Char]
get Li ne = get Char >>=\c ->
if ¢c =="\n" then
return []
el se
get Li ne >>= \cs ->

return (c : cs)

In this example, the[*] " is Haskell's notation for the empty list, while the infix cstnuctor * ”
is the list constructor.

A complete Haskell program defines a single big 1/0O actiotledarai n, of typel O (). The
program is executed by performing the action. Here, for g@otams a program that reads a
complete line from the input, reverses it, and prints it anahtput:
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main :: 10 ()
mai n = getLine >>=\ cs ->
put Li ne (reverse cs)

We have not yet defingolut Li ne :: [Char] -> 10 ();we leave it as an exercise.

Notice that the only operation that combines, or composesattions ig >>=) , and it treats
the world in a single-threaded way hat is, it takes the world produced from the first action and
passes it on to the second action. The world is never dupticat thrown away, no matter what
code the programmer writes. It is this property that alloesoumplemenget Char (and other

| Oprimitives) by performing the operation right away — a sdrtupdate in place”. | will say
more about implementation in Section 2.8.

You might worry that there is an unbounded number of posdil@e“primitives”, such as
put Char andget Char, and you would be right. Some operations can be defined insterm
of existing ones (such aget Li ne) but many cannot. What is needed, of course, is a way to call
arbitrary I/0O libraries supplied by the operating systermpc | discuss in detail in Section 6.

2.3 “do” notation

Rather than make you write programs in the stylised form efléist section, Haskell provides a
special syntax, dubbed “thao notation”, for monadic computations. Using thhe notation we
can writeget TwoChar s as follows:

get TwoChars :: 10O (Char, Char)

get TwoChars = do { c1 <- getChar ;
c2 <- getChar ;
return (cl,c2)

}

You can leave out thec* <-” part when you want to throw away the result of the action:

put TwoChars :: (Char,Char) -> 10 ()
put TwoChars (cl,c2) = do { putChar cl; putChar c2 }

The syntax is much more convenient than ugirg>=) and lambdas, so in practice everyone
usesdo notation for I/O-intensive programs in Haskell. But it isfunotation! The compiler
translates theo notation into calls t >>=) , just as before. The translation rules are sirtiple

do { z<-¢ s} = e>>=\z-> do { s}
do { e s} = e>> do { s}
do {e} = e

It follows from this translation that thdo statementx <- e” binds the variablex. It does
notassign to the locatior, as would be the case in an imperative program. If we use the sa
variable name twice on the left hand side, we bind two distraciables. For example:

1Haskell also allows et form in do notation, but we omit that for brevity.
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do { ¢ <- getChar ; -- ¢ :: Char
c <- putChar ¢ ; -- ¢ :: ()
return c

}

The first line bindsc to the character returned lgyet Char . The second line feeds thatto
put Char and binds alistinctc to the value returned byut Char , namely( ) . This example
also demonstrates that the scope& dfound by %« <- e” does not includes.

A do expression can appear anywhere that an expression cam¢padat is correctly typed).
Here, for example, iget Li ne in do notation; it uses a nestetb expression:

getLine :: 10 [Char]
getLine = do { ¢ <- getChar ;
if ¢ ==’\n" then
return []
el se

do { cs <- getlLine ;
return (c:cs)
} }

2.4 Control structures

If monadic 1/O lets us do imperative programming, what cgpands to the control structures of
imperative languages: for-loops, while-loops, and so orfadt, we do not need to add anything
further to get them: we can build them out of functions.

For example, after some initialisation our web server gogsan infinite loop, awaiting service
requests. We can easily express an infinite loop as a corobinat

forever :: 1O () ->10 ()
forever a = a >> forever a

So(forever a) is an action that repeats forever; this iteration is achieved through the
recursion of or ever . Suppose instead that we want to repeat a given action diggauniimber
of times. That is, we want a function:

repeatN :: Int ->10a ->10 ()

So(repeat N n a) is an action that, when performed, will repean times. It is easy to
define:

repeatN O a = return ()
repeatN n a = a > repeatN (n-1) a

Notice thatf or ever andr epeat N, like (>>) and(>>=), take an action as one of their
arguments. It is this ability to treat an action as a firstxladue that allows us to define our own
control structures. Next,faor loop:

10



for :: [a] ->(a->10()) ->10()

The idea is tha{f or ns fa) will apply the functionf a to each element afis in turn, in
each case giving an action; these actions are then combirssdjuence.

for [] fa =return ()
for (n:ins) fa =fan > for ns fa

We can usé or to print the numbers between 1 and 10, thus:
printNuns = for [1..10] print

(Here,[ 1. . 10] is Haskell notation for the list of integers between 1 andd@jpri nt has
typel nt -> 10 ().) Another way to definé or is this:

for ns fa = sequence_ (map fa ns)

Here,map applies a to each element afs, giving a list of actions; thesequence_ combines
these actions together in sequences8quence_ has the type

sequence_ :: [IOa] ->10 ()
sequence_ as = foldr (>>) (return ()) as

The“ "in“sequence_"reminds us that it throws away the results of the sub-asticgturning
only () . We call this function sequence_" because it has a close cousin, with an even more
beautiful type:

sequence :: [IOa] ->10][a]
It takes a list of actions, each returning a result of tgp@and glues them together into a single
compound action returning a result of typa] . It is easily defined:

return []

do { r <- a;
rs <- sequence as ;
return (r:rs) }

sequence []
sequence (a: as)

Notice what is happening here. Instead of having a fixed ciadie of control structures provided
by the language designer, we are free to invent new onesgjpeéapplication-specific, as the need
arises. This is an extremely powerful technique.

2.5 References

The | O operations so far allow us to write programs that do inpdpouin strictly-
sequentialised, imperative fashion. It is natural to asktiver we can also model another per-
vasive feature of imperative languages, namely mutabiabias. Taking inspiration from ML’s

r ef types, we can proceed like this:

data |ORef a -- An abstract type
newl ORef o a->10 (10Ref a)
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readl ORef :: IORef a ->10a
witelORef :: IORef a->a ->10 ()

A value of typel ORef a is a reference to a mutable cell holding a value of tgpeA new
cell can be allocated usimew ORef , supplying an initial value. Cells can be read and written
usingr eadl ORef andwri t el ORef .

Here is a small loop to compute the sum of the values bet@esrdn in an imperative style:

count :: Int -> 10 Int
count n =do { r <- newl ORef O ;
loop r 1}
wher e
loop :: IORef Int ->1Int ->101Int
loop r i | i>n = readl ORef r
| otherwise = do { v <- readl ORef r ;

witelORef r (v+i) ;
loop r (i+1) }

Just for comparison, here is what it might look like in C:
count( int n) {

int i, v =20
for (i=1; i<=n; i++) { v = v+i ; }
return( v ) ;

}

But this is an absolutely terrible example! For a start, thegpam is much longer and clumsier
than it would be in a purely-functional style (e.g. simplym [ 1. . n] ). Moreover, it purports
to need thd O monad but does not really require any side effects at all.sTthel O monad
enables us to transliterate an imperative program into élgddut if that's what you want to do,
it would be better to use an imperative language in the fiestedl

Nevertheless, ahORef is often useful to “track” the state of some external-wortgjeat. For
example, Haskell 98 provides a direct analogy of the Stah@aibrary functions for opening,
reading, and writing a file:

openFile :: String -> | Owde -> |0 Handl e

hPut Str :: Handle -> [Char] -> 10 ()
hGetLine :: Handle -> 10O [ Char]
hCl ose ;. Handle -> 10 ()

Now, suppose you wanted to record how many characters wateaewritten to a file. A
convenient way to do this is to arrange th&ut St r andhGet Li ne each increment a mutable
variable suitably. Thé ORef can be held in a modified Handle:

type Handl eC = (Handl e, 1 ORef Int)

12



Now we can define a variant afpenFi | e that creates a mutable variable as well as opening
the file, returning adandl eC; and variants ohPut St r andhGet Li ne that take dHandl eC
and modify the mutable variable appropriately. For example

openFileC :: String -> |1 Ovbde -> | O Handl eC

openFileC fn node = do { h <- openFile fn node ;
v <- new CRef O ;
return (h,v) }

hPutStrC :: HandleC -> String -> 10 ()

hPutStrC (h,r) cs =do { v <- readl ORef r ;
witelORef r (v + length cs) ;
hPut Str h cs }

In this example, the mutable variable models (part of) tlagestf the file being written to, by

tracking the number of characters written to the file. Simeefile itself is, in effect, an external

mutable variable, it is not surprising that an internal rblgavariable is appropriate to model its
state.

2.6 Leaving the safety belt at home

| have been careful to introduce th®© monad as a@abstract data typethat is, a type together
with a collection of operations over that type. In particul@e have:

return :: a ->10 a
(>>=) :: 10a->(a->10b) ->100bD
get Char :: 10O Char

put Char :: Char -> 10 ()
...hore operations on characters...

openFile :: [Char] -> | Owbde -> | O Handl e
...nmore operations on files...

nem ORef :: a -> 10 (IORef a)
...nore operations on | ORefs...

A key feature of an abstract data type is whadréventsas well as what ipermits In particular,
notice the following:

e All the operations except oné>>=) , have an I/O action as theiesult but do not take
one as amrgument

e The only operation thatombined/O actions i >>=) .

13



e Thel Omonad is “sticky”: no operation takes argument(s) with &type and returns a
result with a nonl- Otype.

Sometimes, however, such restrictions are irksome. Fanpka suppose you wanted to read a
configuration file to get some options for your program, usiode something like this:

configFileContents :: [String]

configFileContents = lines (readFile "config") -- VWRONG

useOptim sation :: Bool

useOptim sation = "optinm se” ‘elem configFileContents
Here,lines :: String -> [String] is a standard function that breaks a string into
its constituent lines, whilel em : : Eq a => a -> [a] -> Bool tells whether its first

argument is a member of its second argument. Alas, the codetisype correct, because
r eadFi | e has type

readFile :: FilePath -> 10 String

Sor eadFi | e produces ah O Stri ng, whilel i nes consumes &t ri ng. We can “solve”

this by givingconfi gFi | eCont ent s the typel O String, anduseOpti m sati on

the typel O Bool , plus some changes to the code. But that means we can only test
useQpt i mi sat i on when we are in the Omonad, which would be very inconvenient! What

we want is a way to get frorhO St ri ngto St ri ng, but that is the very thing we cannot do

in thel Omonad

There is a good reason for this: reading a file is an 1/0 acsonin principle it mattersvhen
we read the file, relative to all the other I/O operations i pihogram. But in this case, we are
confident that the fileonf i g will not change during the program run, so it really doesrdttar
when we read it. This sort of thing happens often enough thetsskell implementations offer
one more, unsafe, 1/O primitive:

unsafePerformlO:: 10a -> a
Now we can write

configFileContents :: [String]
configFileContents = lines (unsafePerform O (readFile "config"))

and all is well. This combinator has a deliberately long naMéenever you use it, you are

promising the compiler that the timing of this I/O operaticglative to all the other I/O operations

of the program, does not matter. You must undertake thisfgdal@ation, because the compiler

cannot do it for you; that is what theufisaf e” prefix means. Just to make the point even
clearer, here is the “plumbing diagram” fonsaf ePer f orm O

2We would also need to be careful not to read the file every timéested the boolean!
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Result
A

Invent act
world

Discardworld

unsafePerformlO act

As you can see, we have to invent a world out of thin air, and thecard it afterwards.

unsaf ePerform Ois a dangerous weapon, and | advise you against using it Sxéyn
unsaf ePer f or ml Ois best regarded as a tool for systems programmers andylilanat-
ers, rather than for casual programmers. Because the aypptt it encapsulates can happen
at unpredictable moments (or even not at all) you need to kwbat you are doing. What
is less obvious is that you can also use it to defeat the Hasked, by writing a function
cast :: a -> b;see[25]

unsaf ePer f or m Ois often mis-used to force an imperative program into a pui@hctional
setting. This a bit like using a using a chain saw to repaisawasher — it's the wrong tool for
the job. Such programs can invariably be restructured imeaner, functional form. Neverthe-
less, when the proof obligations are satisfi@ds af ePer f or ml Ocan be extremely useful. In
practice, | have encountered three very common patternsagfau

e Performing once-per-run input/output, as éarnf i gFi | eCont ent s.

e Allocating a global mutable variable. For example:

noxf OpenFiles :: I ORef Int
nof OpenFil es = unsaf ePerform O (new ORef 0)

e Emitting trace messages for debugging purposes:

trace :: String -> a -> a
trace s x = unsafePerform O (putStrLn s >> return Xx)

2.7 A quick review

Let us summarise what we have learned so far:

e A complete Haskell program is a single (perhaps large) IAacalledmai n.

e Big I/O actions are built by gluing together smaller actiosgng( >>=) andr et ur n.
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e An I/O action is a first-class value. It can be passed to a fonas an argument, or
returned as the result of a function call (consifler) , for example). Similarly, it can be
stored in a data structure — consider the argumeseiguence, for example.

e The fact that I/O actions can be passed around so freely nitsda&sy to define new “glue”
combinators in terms in existing ones.

Monads were originally invented in a branch of mathematalked category theory, which is
increasingly being applied to describe the semantics @araming languages. Eugenio Moggi
first identified the usefulness of monads to describe conipp@Saomputations” [32]. Moggi’s
work, while brilliant, is not for the faint hearted. For pt@al programmers the breakthrough
came in Phil Wadler’s paper “Comprehending monads” [47{vimch he described the useful-
ness of monads in a programming context. Wadler wrote skaveng very readable papers about
monads, which | highly recommend [48, 49, 50]. He and | buikctly on this work to write the
first paper about monadic I/O [38].

In general, anonadis a triple of a type constructa¥/, and two functionsf et ur n and>>=,

with types
return :: Va.a— M«
>>= & Vaf. Ma— (a—MpB)— M/p

That is not quite all: these three must satisfy the followatggebraic laws:

returnz>>=f = fuo (LUNIT)

m>>= return = m (RUNIT)

x & fu(ms)
my >>= (Az.my >>= (\y.ms)) = (m1 >>= (Ar.mg)) >>= (Ay.1ms) (BIND)

(In this box and ones like it, | use names like (LUNIT) simply @ convenient way to refer to
laws from the running text.) The last of these rules, (BINB)nhuch easier to understand when
written indo notation:

do { z<- my; do { y<- do { x<- my;
Yy <- mo, = m2}
mg ms}

In any correct implementation of thédmonady et ur n and( >>=) should satisfy these prop-
erties. In these notes | present only one monad| thenonad, but a single program may make
use of many different monads, each with its own type congiruceturn andbind operators.
Haskell's type class mechanism allows one to overload thetionsr et ur n and(>>=) so
they can be used in any monad, anddloenotation can likewise be used for any monad. Wadler’s
papers, cited above, give many examples of other monadsyddb not have space to pursue
that topic here.
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2.8 Implementation notes

How difficult is it for a compiler-writer to implement tHheOmonad? There seem to be two main
alternatives.

Keep the monad right through. The first technique carries tHeO monad right through the
compiler to the code generator. Most functional-languagepilers translate the source
program to an intermediate form based closely on the lambftalcs, apply optimising
transformations to that intermediate form, and then geeerade. It is entirely possible
to extend the intermediate form by adding monadic conggru@ne could simply add
(>>=) andr et ur n as primitives, but it makes transformation much easier & adds
thedo-notation directly, instead of a primitiye>>=) function. (Compare the two forms
of the (BIND) rule given in the previous section.) This is @ygproach taken by Benton
and Kennedy in MLj, their implementation of ML [6].

The functional encoding. The second approach, and the one used in the Glasgow Haskeill C
piler (GHC), is to adopt the functional viewpoint of th© monad, which formed the basis
of our earlier pictorial descriptions:

type 10a = Wrld -> (a, Wrld)

If we represent the “world” argument by an un-forgeable mlaf typeWor | d, then we
can directly implementet ur n and( >>=) like this:

return :: a ->10a
return a =\w-> (a,w

(>>=) :: 10a->(a->10b) ->100D
(>>=) mk = \w -> case mw of
(r,w) ->kr w

Herewis the un-forgeable token that stands for the world. In tHend®n of ( >>=) we
see that the world returned by the first action is passed tedbend, just as in the picture
in Section 2.2. We must also implement the primitiv@ operations, such aget Char ,
but that is now no different to implementing other primitmeerations, such as addition of
two integers.

So which of these two approaches is better? Keepindg) @monad explicit is principled, but it
means that every optimisation pass must deal explicitli thie¢ new constructs. GHC’s approach
is more economical. For example, the three laws in Sectiénr@garded as optimisations, are
simple consequences and need no special attention. Alktne,sl have to say that | think the
GHC approach is a bit of a hack. Why? Because it relies foratsectness on the fact that the
compiler never duplicates a redex. Consider this expressio
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get Char >>= \c -> (putChar ¢ >> putChar c)
If we use GHC'’s definitions of >>=) we can translate this to:

\w -> case get Char w of
(c,wl) -> case putChar ¢ wl of
(_,w2) -> putChar ¢ W2

The compiler would be entirely justified in replacing thigleowith:

\w -> case get Char w of
(c,wl) -> case putChar ¢ wl of
(_,w2) -> putChar (fst (getChar w)) w2

Here | have replaced the second use @fith another call tqgget Char w. Two bad things have
happened: first, the incoming world tokem, has been duplicated; and second, there will now
be two calls taget Char instead of one. If this happens, our assumption of singleatthedness
no longer holds, and neither does our efficient “updatelitcgd implementation ofet Char .
Catastrophe!

In the functional language Clean, the whole I/O system ik baian explicit world-passing style.
The single-threadedness of the world is ensured by Cleangianess-type system, which ver-
ifies that values which should be single-threaded (notdidywiorld) are indeed used in single
threaded way [4]. In Haskell, theO monad maintains the world’s single-threadedness by con-
struction; so the programmer cannot err, but it is in pritecipossible for the compiler to do
SO.

In practice, GHC is careful never to duplicate an expresaioose duplication might give rise to
extra work (a redex), so it will never duplicate the callg®et Char in this way. Indeed, Ariola
and Sabry have shown formally that if the compiler never ihapes redexes, then indeed our
implementation strategy is safe [2]. So GHC's approach ismdpbut it is uncomfortable that
an apparently semantics-preserving transformation, sgctinat above, does not preserve the
semantics at all. This observation leads us neatly to thequesstion | want to discuss, hamely
how to give a semantics to the Awkward Squad.

3 What does it all mean?

It is always a good thing to give a precise semantics to a laggdeature. How, then, can we
give a semantics for theOmonad? In this section | will describe the best way | know tevesr
this question. | will introduce notation as we go, so you stiaot need any prior experience of
operational semantics to understand this section. You lsansafely skip to Section 4. Never-
theless, | urge to persevere, because | will use the samefdramework later, to explain the
semantics of concurrency and exceptions.
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3.1 A denotational semantics?

One approach to semantics is to take the functional viewpaiescribed earlier:
type 10a = Wrld -> (a, Wrld)

In this view, the meaning of an action is just a function. Oae make this story work, but it is a
bit unsatisfactory:

e Regarded as a function afr | ds, this program

loop :: 10 ()
| oop = | oop

has denotation bottoml(). But, alas, this program

loopX :: 10 ()
| oopX = put Char

X' >> | oopX

unfortunately also has denotatian Yet these programs would be regarded as highly
distinguishable by a user (one loops for ever, the otheitptrin’ for ever). Nor is the
problem restricted to erroneous programs: some prograengefsprocesses, for example)
may bedesignedo run essentially forever, and it seems wrong to say that theaning is
simply 1!

e Consider two Haskell programs running in parallel, eachdsgnoutput to the other —
a Web server and a Web browser, for example. The output of mash form part of the
Wor | d given as the input to the other. Maybe it would be possiblestd dith this through
a fixpoint operator, but it seems complicated and un-intei(io me anyway!).

e The approach does not scale well when we add concurrencghwid will do in Section 4.

These problems may be soluble while remaining in a denotattivamework, perhaps by pro-
ducing a sequence ¥br | ds, or by returning a set afacesrather than a newr | d. To give
the idea of the trace approach, we mod@éllike this:

type 10 a = (a, Set Trace)
type Trace = [Event]
data Event = Put Char Char | Cet Char Char |

A program that reads one character, and echoes it back terens would have semantics

((), { [GetChar "a, PutChar 'a'],
[GetChar "b’, PutChar 'b’],
[GetChar "c¢’', PutChar 'c’'],

1)
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x,y € Variable
k€ Constant
con € Constructor
c € Char
Values V o= \a->M|k|conM; --- M, | c
| returnM | M>>=N
| put Char ¢ |get Char
Terms M,N,H = z|V|MN|if MthenN, elseNy| ---
Evaluation contexts E == []|E>=M

Figure 2: The syntax of values and terms.

We return asetof traces, because the trace contains detaiismftsas well asoutputs so there
must be a trace for each possible input. The set of tracesidesall the behaviours the program
can have, and no others. For exampl@t Char ’ x’, Put Char 'vy’] isexcluded.

This approach is used to give the semantics of CSP by Ros@pe Hbwever we will instead
adopt anoperationalsemantics, based on standard approaches to the semanticsess cal-
culi [31]. Ultimately, | think the two approaches have sianipower, but | find the operational
approach simpler and easier to understand.

3.2 An operational semantics

Our semantics is stratified in two levels: emmer denotational semanti¢bat describes the be-
haviour of pure terms, while asuter monadic transition semantidescribes the behaviour bO
computations. We consider a simplified version of Haskall language has the usual features
of a lazy functional language (lambda abstraction, apptinadata structures, case expressions,
etc), augmented with constants correspondingy @operations. We will only present those el-
ements of the syntax that are relevant to the semantics; atipects (such as how we represent
lists, or how to write a case expression) would not aid cotmgmsgion of the semantics, and are
not presented.

M and N range ovetermsin our language, antl’ ranges over values (Figure 2). alueis a
term that is considered by the inner, purely-functional @etics to be evaluated. The values in
Figure 2 include constants and lambda abstractions, ag bstighey are unusual in two ways:

e We treat the primitive monadicOoperations as values-or exampleput Char ' ¢’ isa
value. No further work can be done on this term in the purahefional world; it is time
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to hand it over to the outer, monadic semantics. In the sanye Wa>>= N, get Char,
andr et ur n M are all values.

e Some of these monadidvalues have arguments that are not arbitrary tethgs, etc),
but are themselves values (ed). The only example in Figure 2 is the valpat Char ¢
but others will appear later. Sout Char ’ A’ is a value, buput Char (chr 65)
is not (it is a term, though). It is as gut Char is astrict data constructor. The reason

for this choice is that evaluatingut Char 's argument is something that can be done in
the purely-functional world; indeed, mustbe done before the output operation can take

place.

We will give the semantics by describing how omegram stateevolves into a new program

state by making &ransition For now, we model a program state simply as a term, but we writ

itin curly braces, thug M }, to remind us that it is a program state.

3.3 Labelled transitions

The transition from one program state to the next may or mapakabelledby anevenfa. So
we write a transition like this:
P55 Q

The eventsy represent communication with the external environmeiatt iy input and output.
Initially we will use just two events:

I C .y
e P — () means “program stat® can move ta), by writing the character to the
standard output”.

2. .
e P — () means “program stat® can move tay, by reading the characterfrom the
standard input”.

Here, then, are our first two transition rules.

{put Char c} e, {return()}
{get Char } Ze, {returnc}

The first rule says that a program consisting onlpof Char ¢ can make a transition, labelled

by! ¢, to a program consisting efet urn () . The second rule is similar. But most programs

consist of more than a single I/O action! What are we to do?h@&a answer that question we
introduceevaluation contexts
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{E[put Char c|} Lo {Elreturn()]} (PUTC)
(Flget Char]} 2% {E[returnd} (GETC)

{E[return N>>=M]} — {E[M N]} (LUNIT)

i[[M]] =V MZV o

E[M]} — {E[V]}

Figure 3: The basic transition rules

3.4 Evaluation contexts

Theget Char transition rule is all very well, but what if the program cats of more than a
singleget Char ? For example, consider the program

mai n = get Char >>= \c -> put Char (toUpper c)

Which is the first I/O action that should be performed? Tle¢ Char , of course! We need a
way to say “the first 1/0O action to perform is to the left of the>=) ". Sometimes we may have
to look to the left of more than one>>=) . Consider the slightly artificial program

main = (getChar >>= \c -> getChar) >>=\d -> return ()

Here, the first 1/O action to be performed is the leftmgst Char . In general, to find the first
I/O action we “look down the left branch of the tree(cf>=) nodes”.

We can formalise all this arm-waving by using the now wethbsshed notion of aevaluation
context[9, 52]. The syntax of evaluation contexts is this (Figure 2)

E == [] | E>>=M

An evaluation contexE is a term with a hole, writteft], in it. For example, here are three
possible evaluation contexts:

B, = []
E; = [|>>= (\c -> return (ord c))
Es = ([]>>=1f) >>=g

In each case thg-1” indicates the location of the hole in the expression. Weenltj /| to denote
the result of filling the hole ik with the termA/. Here are various ways of filling the holes in
our examples:

Eifprint "hello"] = print "hello"
Es[get Char | = getChar >>= (\c -> return (ord c))
Es[new ORef True] = (new ORef True >>= f) >>= g
3t oUpper :: Char -> Char converts a lower-case character to upper case, and ledwesabtaracters
unchanged.
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Using the notation of evaluation contexts, we can give the rales for put Char and
get Char, in Figure 3. In general we will give each transition rule ifigure, and give it a
name — such as (PUTC) and (GETC) — for easy reference.

The rule for (PUTC), for example, should be read: “ffat Char occurs as the next I/O action,
in a contextt|-], the program can make a transition, emitting a characterepidcing the call
toput Char byreturn ()”. This holds for any evaluation contekf.].

Let us see how to make transitions using our example program:
main = getChar >>= \c -> put Char (toUpper c)

Using rule (GETC) and the evaluation contéxt >>= \ ¢ -> put Char (toUpper c)),
and assuming that the environment delivers the charagterin response to thget Char , we
can make the transition:

{get Char >>= \c -> putChar (toUpper c)}

{return "w >>= \c -> putChar (toUpper c)}

How did we choose the correct evaluation context? The bestavsee is to try choosing another
one! The context we chose is the only one formed by the symtdigure 2 that allows any
transition rule to fire. For example the contéxt which is certainly well-formed, would force
the term in the hole to bget Char >>= \c¢ -> put Char (toUpper c), and no rule
matches that. The context simply reaches down the leftehiag chain of >>=) combinators
to reach the left-most action that is ready to execute.

What next? We use the (LUNIT) law of Section 2.7, expressedrasy transition rule:
{E[return N>>=M]} — {E[M N]} (LUNIT)
Using this rule, we make the transition

{return 'w >>= \c -> putChar (toUpper c)}

{(\c -> putChar (toUpper c)) 'w}

Now we need to do some ordinary, purely-functional evaturatvork. We express this by “lift-
ing” the inner denotational semantics into our transitipstem, like this (the “(FUN)” stands for
“functional”):
EM] =V MZV
{E[M]} — {E[V]}

That is, if the termM has valuel’, as computed by the denotational semanticd/gfnamely
E[M], then we can replacé/ by V' at the active site. The functiofi[] is a mathematical
function that given a term/, returns its valu€ [M]. This function defines the semantics of the
purely-functionalpart of the language — indeedl[] is called thedenotational semantiasf the

(FUN)
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language. Denotational semantics is well described in nbaks [43, 1], so we will not study
it here; meanwhile, you can simply think {1/] as the value obtained by evaluatingf.

The side conditionV/ # V is just there to prevent the rule firing repeatedly withoukimg
progress, becausdV'] = V for anyV. Rule (FUN) allows us to make the following transition,
using normal beta reduction:

{(\c -> putChar (toUpper c)) 'wW } — {putChar W}

In making this transition, notice thaf[] produced the valugut Char W, and not
put Char (toUpper 'w ). As we discussed towards the end of Section 3.2, we model
put Char as astrict constructor.

Now we can use thput Char rule to emit the character:

{put Char ' W} LW, {return ()}

And now the program is finished.

Referring back to the difficulties identified in Section 3wle can now distinguish a program
| oop that simply loops forever, from prograhoopXthat repeatedly printsx’ forever. These
programs both have denotatidnin a (simple) denotational semantics (Section 3.1), but the
have different behaviours in our operational semanticapX will repeatedly make a transition
with the label x. But what happens tooop? To put it another way, what happens in rule (FUN)
if £{M] = L? The simplest thing to say is that then there is no v&iwich tha€[M] = V,
and so (FUN) cannot fire. So no rule applies, and the prograstuck. This constitutes an
observably different sequence of transitions thaopXx°.

Lastly, before we leave the topic of evaluation contextj¢enote that the term/ in rule (FUN)
always has typeé O for some typer; that is, an evaluation contek{:] always has an 1/O action
in its hole. (Why? Because the hole in an evaluation contexither the whole program, of
typel O (), or the left argument of >>=) , of typel O+ for somer.) So there is no need to
explain how the program (say)r ue} behaves, because it is ill-typed.
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r € | ORef

V o= ... |witel ORef r N |readl ORef r | new ORef M |r
P,Q,R := {M}  The main program
| (M), Anl ORef namedr, holding M/
| P | @ Parallel composition
|

ve. P Restriction

{E[r eadl ORef r|} | (M), — {E[returnM]} |(M), (READIO)
{Ewritel ORef r N|} | (M), — {Efreturn ()]} |(N), (WRITEIO)

r¢& fn(E,M)
{E[neM ORef M|} — vr.({E[returnr|} | (M),)

(NEWIO)

Figure 4: Extensions fdrORef s

3.5 Dealing withl ORef s

Let us now add ORef s to our operational semantics. The modifications we need iges i
Figure 4:

e We add a new sort ofaluefor eachl ORef primitive; namelynewl ORef ,r eadl ORef ,
andw i t el ORef .

e We add a new sort of value forORef identifiers,r. An | ORef identifier is the value
returned bynewl ORef — you can think of it as the address of the mutable cell.

¢ \We extend a program state to be a main thrgdld}, as before, together with zero or more
| ORef s, each associated with a reference identifier

The syntax for program states in Figure 4 might initially bepsising. We use a vertical bar to
join the main thread and tHeORef s into a program state. For example, here is a program state

4] am being a bit sloppy here, because a denotational seraafigicls a mathematical value, not a term in the
original language, but in fact nothing important is beingeptwinder the carpet here. From a technical point of view
it may well be simpler, in the end, to adopt an operationalesgios for the inner purely-functional part too, but that
would be a distraction here. Notice, too, that the valuafimttion of a denotational semantics would usually have
an environmenty. But the rule (FUN) only requires the value of a closed temrthe environment is empty.

5By “observable” | mean “observableoking only at the labelled transitiofighe labelled transitions constitute
the interaction of the program with its environment. You naague that we should not say thaiop gets “stuck”
when actually it is in an infinite loop. For example, the piaogf or ever (return ()) is also an infinite loop
with no external interactions, and it makes an infinite segaef (unlabelled) transitions. If you prefer, one can
instead add a variant of (FUN) that makes an un-labelleditian to an unchanged statefif M| = L. Thenl oop
would also make an infinite sequence of un-labelled trasitiIt's just a matter of taste.
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PlQ = Q|P (COMM)
Pl@QIR = (PIQI|R (A5500)
vewy.P = vyvz.P (SWAP)
(ve.P) | Q@ = vz.(P | Q), r¢ fn(Q) (EXTRUDE)
ve.P = vy.Ply/x], y ¢ fn(P) (ALPHA)
L9 (pan b )
P|R—Q|R ve.P — vz.Q)
P=P P 5 Q Q=@
P50 (EQUIV)

Figure 5: Structural congruence, and structural transstio

for a program that has (so far) allocated tivORef s, calledr; andr;, respectively:

{M3} [ (N1)ry | (N2)r,

If you like, you can think of running the (active) prograid in parallel with two (passive)
containers; andr,, containing/N; and N, respectively.

Here are the rules for reading and writih@Ref s:

{E[r eadl ORef r|} | (M), — {E[return M]} | (M), (READIO)
{Ejwritel ORef r N|} | (M), — {E[return ()]} | (N), (WRITEIO)

The rule forr eadl ORef says that if the next I/O action in the main programéad| CRef r,
and the main program is parallel with darORef namedr containing M, then the action
readl ORef r can be replaced byet urn M 8. This transition is quite similar to that for
get Char, except that the transition is unlabelled because it igmaleto the program — re-
member that only labelled transitions represent intevacttith the external environment.

We have several tiresome details to fix up. First, we origynsdid that the transitions were
for whole program states, but these two are for gudyt of a program state; there might be
otherl ORef s, for example. Second, what if the main program was not adjgo the relevant
| CRef ? We want to say somehow that it can become adjacent to wlach@Ref it pleases.
To formalise these matters we have to give several “strattmles, given in Figure 5. Rule
(PAR), for example, says that#f can move ta@, thenP in parallel with anything £) can move
to Q in parallel with the same anything — in short, non-partitipg pieces of the program
state are unaffected. The equivalence rules (COMM), (ASS€2§ that | is associative and

5The alert reader will notice that (READIO) duplicates thenteM, and hence modelsall-by-namerather
that call-by-need It is straightforward to model call-by-need, by addineapto the operational semantics, as
Launchbury first showed [24]. However, doing so adds exttatianal clutter that is nothing do to with the main
point of this tutorial. In this tutorial | take the simplerthaof modelling call-by-name.
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commutative, while (EQUIV) says that we are free to use tleegsvalence rules to bring parts
of the program state together. In these rules, we ¢aterange over both events, suchlasand
?¢, and also over the empty label. (In the literature, you wiién see the empty event written

T.)

It's all a formal game. If you read papers about operatiopatantics you will see these rules
over and over again, so it’'s worth becoming comfortable wigm. They aren’t optional though;
if you want to conduct water-tight proofs about what can lagppt’'s important to specify the

whole system in a formal way.

Here is the rule fonewl ORef :

r & fn(E, M)
{E[newM ORef M|} — vr.({E[returnr]} | (M),)

(NEWIO)

If the next I/O action in the main program is to create a h&@Ref , then it makes a transitionto a
new state in which the main program is in parallel with a neergated (and suitably initialised)
| ORef namedr. What isr? It is an arbitrary name whose only constraint is that it nmagt
already be used i/, or in the evaluation conteXt. That is what the side condition ¢
fn (E, M) means —n (E, M) means “the free names bfand /.

Here is an example of working through the semantics for tHevitng program:

main = newl ORef O >>=\ v ->
readl ORef v >=\ n ->
witel ORef v (n+l)

The program allocates a ndwDRef , reads it, increments its contents and writes back the new
value. The semantics works like this, where | have savedesppabbreviatingfiewl ORef ” to
“new’ and similarly forr eadl ORef andwri t el ORef :

{new 0 >>= \v ->read v >>= \n -> wite v (n+l)}
vr.{returnr>>=\v ->read v >>= \n -> wite v (n+l)} |(0),) (NEWIO)
vr.({(\v ->read v >>=\n -> wite v (n+l)) r} | (0),) (LUNIT)
vr.({readr>>=\n -> witer(n+l))} | (0),) (FUN)
vr.{return 0 >>=\n -> witer(n+l))} | (0),) (READIO)
vr.({(\n -> writer(n+l)) 0} |(0),) (LUNIT)
vr.({writer(0+1))} | (0),) (FUN)
vr.({return ()} | (0+1),) (WRITEIO)

L el

It should be clear that naming a néwdRef with a name that is already in use would be a Bad
Thing. That s the reason for the side condition on rule (NEN\8ays that cannot be mentioned
in E or M. But what ifr was in use somewhesdsein the program state — remember that there
may be other threads running in parallel with the one we ansidering? That is the purpose of
the “vr” part: it restricts the scope of Having introduced in this way, we need a number of
structural rules (Figure 5) to let us mowearound. Notably, (EXTRUDE) lets us move all the
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v’'s to the outside. Before we can use (EXTRUDE), though, we mesd to use (ALPHA) to
change our mind about the name we chose if we come across aatashe Once all the'’s are
at the outside, they don't get in the way at all.

4 Concurrency

A web server works by listening for connection requests oartiqular socket. When it receives
a request, it establishes a connection and engages in eebtidhal conversation with the client.
Early versions of the HTTP protocol limited this conversatto one utterance in each direction
(“please send me this page”; “ok, here it is”), but more réeemnsions of HTTP allow multiple
exchanges to take place, and that is what we do here.

If a web server is to service multiple clients, it must deah@arently with each client. It is
simply not acceptable to deal with clients one at a time. Tindawus thing to do is to fork a
newthreadof some kind for each new client. The server therefore mustdmncurrentHaskell
program.

| make a sharp distinction betweparallelismandconcurrency

e A parallel functional program uses multiple processors to gain perémce. For example,
it may be faster to evaluatg + e, by evaluatinge; ande, in parallel, and then add the
results. Parallelism has no semantic impact at all: the mgaof a program is unchanged
whether it is executed sequentially or in parallel. Funihere, the results are deterministic;
there is no possibility that a parallel program will give aesult in one run and a different
result in a different run.

e In contrast, a&oncurrentprogram has concurrency as part of its specification. Thgram
must run concurrent threads, each of which can independeatform input/output. The
program may be run on many processors, or on one — that is denmeptation choice.
The behaviour of the program is, necessarily and by design;deterministic. Hence,
unlike parallelism, concurrency has a substantial semanpact.

Of these two, my focus in these notes is exclusively on caroay, not parallelism. For those
who are interested, a good introduction to parallel fumaigrogramming is [46], while a recent
book gives a comprehensive coverage [12].

Concurrent Haskell [35] is an extension to Haskell 98 desiigto support concurrent program-
ming, and we turn next to its design.
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4.1 Threads andf or kl O

Here is the main loop of the web server:

accept Connections :: Config -> Socket -> 10 ()
accept Connecti ons confi g socket
= forever (do { conn <- accept socket ;
forkl O (serviceConn config conn) })

(We definedf or ever in Section 2.4.) This infinite loop repeatedly cadlscept , a Haskell
function that calls the Unix procedure of the same nawi@ fhechanisms we will discuss in
Section 6), to accept a new connectiaccept returns, as part of its resultHandl e that can
be used to communicate with the client.

accept :: Socket -> 10 Connection
type Connection = (Handl e, -- Read from here
SockAddr) -- Peer details

Having established a connecti@tcept Connect i ons then use$ or kI Oto fork off a fresh
thread,( ser vi ceConn confi g conn), to service that connection. The typefadr kI O
is this:

forklO:: IOa -> 10 Threadld

It takes an I/O action and arranges to run it concurrentlywhe “parent” thread. The call to
f or kl Oreturns immediately, returning as its result an identifeerthe forked thread. We will
see in Section 5.3 what thihr eadl d can be used for.

Notice that the forked thread doesn’t need to be passed amynpeers, as is common in C
threads packages. The forked action is a full closure thatticas the values of its free variables.
In this case, the forked action(ser vi ceConn confi g conn), which obviously captures
the free variablesonf i g andconn.

A thread may go to sleep for a specified number of microsecbydsllingt hr eadDel ay:
threadDelay :: Int -> 10 ()

f or kI Ois dangerous in a similar way thahsaf ePer f or M Ois dangerous (Section 2.6).
I/O actions performed in the parent thread may interleaamiarbitrary fashion with I/O actions
performed in the forked thread. Sometimes that is fine (éng.threads are painting different
windows on the screen), but at other times we want the thrieads-operate more closely. To
support such co-operation we need a synchronisation mechamwhich is what we discuss next.

4.2 Communication andMWar s

Suppose we want to add some sort of throttling mechanismatonthen there are more than
N threads running the server does something different (stgps accepting new connections
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or something). To implement this we need to keep track of oked humber of (active) forked
threads. How can we do this? The obvious solution is to haveuater that the forked thread
increments when it begins, and decrements when it is donev8&wmust of course be careful! If
there are lots of threads all hitting on the same counter w& make sure that we don't get race
hazards. The increments and decrements must be indivisible

To this end, Concurrent Haskell supports a synchronisesiorepnf anl ORef called anwar :

data MWVar a -- Abstract
newEnptyMvar :: 10 (MWar a)

t akeMWwar :: Mar a ->10a

put MVar ;. Mvar a ->a ->10/()

Like anl ORef , anWar is (a reference to) a mutable location that either can corstaialue
of typea, or can instead be emptyLike newl ORef , newEnpt yMVar creates atwWar but,
unlike anl CRef , thelWar is created empty.

put MVar fills an emptyWar with a value, and akeMvar takes the contents of dd/ar out,
leaving it empty. If it was empty in the first place, the callttakeMVar blocks until another
thread fills it by callingput Mvar . A call to put MVar on anWar that is already full blocks
until theMvar becomes empty

With the aid ofWar s it is easy to implement our counter:

accept Connections :: Config -> Socket -> 10 ()
accept Connecti ons confi g socket
= do { count <- newEnptyWar ;
put M\ar count O ;
forever (do { conn <- accept socket ;
forklO (do { inc count ;
servi ceConn config conn
dec count})

}) o}

inc,dec :: War Int -> 10 ()
inc count = do { v <- takeMWar count; putMar count (v+1) }
dec count = do { v <- takeMWar count; putMWar count (v-1) }

Presumably there would also be some extra code tept Connect i ons to inspect the value
of the counter, and take some action if it gets too large.

The update of the counter, performedibyc anddec is indivisible because, during the brief
moment whild nc has read the counter but not yet written it back, the countation is empty.
So any other thread that tries to usec or dec at that moment will simply block.

"This represents a change from an earlier version of ConuuHaskell, in whichput Mar on a full Mar
was a program error.
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m € MWar
t € Threadld
d € Integer
V == ... forklOM |threadDelayd|t|d
|  put War m N |takeWar m | newEnpt yMWar | m
P.Q,R = ...
| {M}, A thread called
| (M), An War calledm containingM
| Om An emptyMvar calledm
ué fn(M,E)
[Efor ki OMT}, = vu({Ereturnall, [{arg,) L ORK)
m & fn (E)

TEnewEmptyWarl, — vm.({Ereturnmll, [0 L EWM)
{E[t akeMVar m|}; | (M),, — {E[return M} | m (TAKEM)
{E[put War m M1}, | Om — A{E[return ()]} | (M), (PUTM)

(Eft hreadDel ay d}, % {Efreturn ()]} (DELAY)

Figure 6: Extensions to support concurrency
4.3 Semantics

One of the advantages of the operational semantics we set&g@ction 3 is that it can readily
be extended to support concurrency &r s. The necessary extensions are given in Figure 6:

e We add new values to represent (a) each new primit@®peration; (b) the name of an
MWar m, and a thread; (c) the integer argument oftehr eadDel ay, d.

¢ \We extend program states by adding a form fo&far , both in the full staté M/),,,, and
in the empty state),,,; and a form for a named thredd/},.

e We provide transition rules for the new primitives.
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Rules (FORK) and (NEWM) work in a very similar way as the (NEYYkule that we described

in Section 3.5. In particular, they usen an identical fashion to control the new names that are
required. Rules (PUTM) and (TAKEM) are similar to (WRITEI@hd (READIO), except that
(TAKEM) leaves thewar empty, while (PUTM) fills it.

For the first time, the semantics of the program has becomealatarministic. If there are two
threads both of which want to take the contents ol&far , the semantics leaves deliberately
unspecified which one “wins”. Once it has emptied ivar with rule (TAKEM), however, the
other thread can make no progress until some other thresat fill

The rule (DELAY) deals witht hr eadDel ay. To express the delay, | have invented an extra
event$d, which means d microseconds elapse”. Recall that an event indicatesaictien with

the external world (Section 3.3), so | am modelling a delapmsnteraction with an external
clock. This is not very satisfactory (e.g. 1/0 events arespmneably queued up, but clock ticks
should not be), but it gives the general idea.

Notice that there is no explicit rule for “blocking” a threathen it tries to take the contents of an
MWar thatis empty. All that happens is that there is no valid titasrsrule involving that thread,
So it stays unchanged in the program state untiNidar it is trying to take is filled.

4.4 Channels

The thread created dyor kI Oand its parent thread can each independently perform imglt a
output. We can think of the state of the world as a shared, bhitzbject, and race conditions
can, of course, arise. For example, if two threads are fo@ugh to write to the same file,
say, bad things are likely to happen.

But what if wewantto have two threads write to the same file, somehow mergingwhies, at
some suitable level of granularity? Precisely this behavi® needed in our web server, because
we want to log errors found by the client-service threads smmgle error-log file. The simplest
thing to do is to create a single thread whose business isite tarthe error-log file; to log an
error, a client-service thread need only send a message &rithr-logging thread. But we have
just pushed the problem to a different place: what does itmb@ésend a message”?

UsingWar s we can define a new type of buffered channels, which we willemgnt in this
section:

type Channel a = ...given later...
newChan :: 10O (Channel a)

put Chan :: Channel a ->a -> 10 ()
get Chan :: Channel a -> 10 a

A Channel permits multiple processes to write to it, and read fromately. The error-logging
thread can now repeatedly det Chan, and write the value it receives into the file; meanwhile
a client-service thread wanting to log an error canuseChan to send the error message to the
error logger.
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Channel
ltem ltem ltem
Read end | | | Write end
First value Second value Third value
_ Y,

Figure 7: A channel with unbounded buffering

One possible implementation Ghannel is illustrated in Figure 7. The channel is represented
by a pair ofMvar s (drawn as small boxes with thick borders), that hold thd exad and write
end of the buffer:

type Channel a = (Mvar (Stream a), -- Read end
Mvar (Stream a)) -- Wite end (the hole)

The War s in aChannel are required so that channel put and get operations can Gtbyni
modify the write and read end of the channels respectivehe data in the buffer is held in a
St r eam that is, anwWar which is either empty (in which case there is no data inSheean),
or holds an t em(a data type we will define shortly):

type Streama = MWar (ltem a)

An | t emis just a pair of the first element of ti& r eamtogether with &t r eamholding the
rest of the data:

data Itema = Mitema (Stream a)

A St r eamcan therefore be thought of as a list, consisting of alt@mgatt ens and fullWar s,
terminated with a “hole” consisting of an empWv/ar . The write end of the channel points to
this hole.

Creating a new channel is now just a matter of creating the aea writeMvar s, plus one
(empty)Mvar for the stream itself:

newChan = do { read <- newkEnptyMWar ;
wite <- newknptyWar ;
hol e <- newEnptyWar ;
put War read hol e ;
put War wite hole ;
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return (read,wite) }

Putting into the channel entails creating a new engity eamto become the hole, extracting
the old hole and replacing it with the new hole, and then pgtéinl t emin the old hole.

put Chan (read,wite) val
= do { new_hol e <- newEnptyMWar ;
old hole <- takeWar wite ;
put War wite new_hole ;
put War ol d_hole (MItemval new _hole) }

Getting an item from the channel is similar. In the code tludibdvs, notice thaiget Chan
may block at the secondakeMvar if the channel is empty, until some other process does a
put Chan.

getChan (read,wite)
= do { head var <- takeMar read ;
Mkl tem val new head <- takeMar head var ;
put War read new_head ;
return val }

It is worth noting that any number of processes can safelievimto the channel and read from
it. The values written will be merged in (non-determinisicheduling-dependent) arrival order,
and each value read will go to exactly one process.

Other variants are readily programmed. For example, censidnulti-cast channel, in which
there are multiple readers, each of which should see alldhesg written to the channel. All that
is required is to add a new operation:

dupChan :: Channel a -> 10 (Channel a)

The idea is that the channel returneddayypChan can be read independently of the original, and
sees all (and only) the data written to the channel aftedti@gChan call. The implementation
is simple, since it amounts to setting up a separate readeppinitialised to the current write
pointer:

dupChan (read,wite)
= do { new read <- newEknptyMWar ;
hol e <- readWar wite ;
put War new read hol e ;
return (new read, wite) }
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forkl O ;. 10a ->10 Threadld

threadDelay :: Int -> 10 () -- Sleep for n mcroseconds
data MWar a -- Abstract

neweEnptyMvar :: 10 (MWar a) -- Created enpty

newiwar o a->10 (MWar a) -- Initialised

t akeMvar . MWar a ->10a -- Bl ocking take

put MVar . MWar a ->a->10/() -- Bl ocking put

tryTakeMvar :: MWWar a -> 10 (Maybe a) -- Non-bl ocki ng take

t ryPut MVar . MWar a ->a -> 10 Bool -- Non-bl ocking put

I sSEnptyMWar :: MWar a -> | O Bool -- Test for enptiness

Figure 8: The most important concurrent operations

To make the code clearer, | have used an auxiliary functiemdMar , which reads the value
of anMWar , but leaves it futl

readMvar :: Mvar a -> 10 a

readWar var = do { val <- takeMWar var ;
put M\ar var val ;
return val }

But watch out! We need to modifget Chan as well. In particular, we must change the call
“t akeMvar head var” to “readMWar head _var”. The MVars in the bottom row of
Figure 7 are used to block the consumer when it catches uptietproducer. If there are two
consumers, it is essential that they can both march dowrtrs@ns without intefering with each
other. Concurrent programming is tricky!

Another easy modification, left as an exercise for the reaslés add an inverse et Chan:
unGet Chan :: Channel a ->a -> 10 ()

4.5 Summary

Addingf or kI OandMWar s to Haskell leads to a qualitative change in the sorts ofiegidns
one can write. The extensions are simple to describe, andpmrational semantics was readily
extended to describe them. Figure 8 lists the main opematiooncurrent Haskell, including
some that we have not discussed.

You will probably have noticed the close similarity betwdebRef s (Section 2.5) antivar s
(Section 4.2). Are they both necessary? Probably not. lotiseawe find that we seldom use
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| ORef s atall:

¢ Although they have slightly different semantics (a@Ref cannot be empty) it is easy to
simulate arl ORef with anMVvar (but not vice versa).

e An MWar is not much more expensive to implement thar &Ref .

e An | ORef is fundamentally unsafe in a concurrent program, unlesscaouprove that
only one thread can access it at a time.

| introduced ORef s inthese notes mainly as a presentational device; thayedlone to discuss
the idea of updatable locations, and the operational machito support them, before getting
into concurrency.

While the primitives are simple, they are undoubtedly ptivei MVar s are surprisingly of-
ten useful “as is”, especially for holding shared state, thelyy are a rather low-level device.
Nevertheless, they provide the raw material from which carefashion more sophisticated ab-
stractions, and a higher-order language like Haskell issuiled for such a purpos€hannel s
are an example of such an abstraction, and we give severalim{B5]. Einar Karlsen’s thesis
describes a very substantial application (a programmingench) implemented in Concurrent
Haskell, using numerous concurrency abstractions [22].

It is not the purpose of these notes to undertake a proper a@tine survey of concurrent
programming, but | cannot leave this section without memtig two other well-developed ap-
proaches to concurrency in a declarative setting. Erlamg(&rict) functional language devel-
oped at Ericsson for programming telecommunications egptins, for which purpose it has
been extremely successful [3]. Erlang must be the most yidséd concurrent functional lan-
guage in the world. Concurrent ML (CML) is a concurrent esien of ML, with a notion of
first-class events and synchronisation constructs. CMintsare similar, in some ways, to
Haskell's| O actions. CML lays particular emphasis on concurrency abstons, and is well
described in Reppy’s excellent book [41].

5 Exceptions and timeouts

The next member of the Awkward Squad is robustness and excovery. A robust program
should not collapse if something unexpected happens. @fepane tries to write programs in
such a way that they will not fail, but this approach alonensuificient. Firstly, programmers
are fallible and, secondly, some failures simply cannotuwéded by careful programming.

Our web server, for example, should not cease to work if

e A file write fails because the disk is full.

e A client requests a seldom-used service, and that code takdsead of an empty list or
divides by zero.

36



e A client vanishes, so the client-service thread should toteand log an error.

e An error in one thread makes it go into an infinite recursiod grow its stack without
limit.

All these events are (hopefully) rare, but they are all udigtable. In each case, though, we
would like our web server to recover from the error, and curgito offer service to existing and
new clients.

We cannot offer this level of robustness with the facilitves have described so far. We could
check for failure on every file operation, though that wouddrhther tedious. We could try to

avoid dividing by zero — but we will never know that we haveriduevery bug. And timeouts

and loops are entirely inaccessible.

This is, of course, exactly what exceptions were invented&a exception handler can enclose
an arbitrarily large body of code, and guarantee to give tbgqammer a chance to recover from
errors arising anywhere in that code.

5.1 Exceptions in Haskell 98

Like many languages, HaskelllsO monad offers a simple form of exception handling. 1/O
operations mayaisean exception if something goes wrong, and that exceptioteaaughtby
a handler. Here are the primitives that Haskell 98 offers:

userError :: String -> | Cerror
i oError > 1CError ->10 a
catch . 10a -> (ICerror ->10a) ->10a

You can raise an exception by callimgEr r or passing it an argument of tydeOEr r or .
You can construct ah OEr r or from a string usinguser Err or. Finally, you can catch an
exception withcat ch. The call( cat ch a h) is an action that, when performed, attempts to
perform the actiom and return its results. However, if performiagaises an exception, then

is abandoned, and inste@ll e) is returned, where is thel CEr r or in the exception.
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e € Exception
V o= ...|ioErrore|catchM N
E == [|]|E>>=M|catchEM
{E[i oError e>>=M]}; — {E[ioError ¢]}; (IOERROR)

{E[catch (i oError e) M|}, — {E[M €]}, (CATCH?1)
{E[catch (return N) M]}; — A{E[freturnN]}, (CATCH2)

Figure 9: Extensions for exceptions

Here is an example of how we might extend our main web-seoa: |

accept Connections :: Config -> Socket -> 10 ()
accept Connecti ons confi g socket
= forever (do { conn <- accept socket ;
forkl O (service conn) }
wher e
service :: Connection -> 10 ()
service conn = catch (serviceConn config conn)
(handl er conn)

handl er :: Connection -> Exception -> 10 ()
handl er conn e = do { |l ogError config e ;
hCl ose (fst conn) }

Now the forked thread ser vi ce conn) has an exception handler wrapped around it, so that
if anything goes wrondhandl er will be invoked. This handler logs the error (presumably by
sending a message to the error-logging thread through aaehbeld inconf i g), and closes
the connection handle.

Figure 9 gives the extra semantics required to support Ha8Reexceptions, in a style that
by now will be familiar. The extra evaluation context sayattive should evaluate inside a
cat ch. Rule (IOERROR) says that a call t@Er r or is propagated by >>=) ; this is what
corresponds to “popping the stack” in a typical implemeatatRules (CATCH1) describes what
happens when the exception meetsad ch: it is passed on to the handler. Lastly, (CATCH2)
explains thatat ch does nothing if execution of the protected code terminatesally with
returnN.

The Haskell 98 design falls short in two ways:

e It does not handle things that might go wrong in purely-fiorcdl code, because an ex-
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ception can only be raised in thé© monad. A pattern-match failuteor division by zero,
brings the entire program to a halt. We address this probte&ection 5.2

e It does not deal wittasynchronougxceptions. A synchronous exception arises as a di-
rect result of executing some piece of code — opening a nastemt file, for example.
Synchronous exceptions can be raised only at well-definecepl An asynchronous ex-
ception, in contrast, is raised by something in the threakgronment: a timeout or user
interrupt is an asynchronous exception. It is useful tottresource exhaustion, such as
stack overflow, in the same way. An asynchronous exceptiorstréke at any time, and
this makes them much harder to deal with than their synclu®oousins. We tackle asyn-
chronous exceptions in Section 5.3

5.2 Synchronous exceptions in pure code

Why does Haskell 98 not allow the program to raise an exceipurely-functional code? The
reason is that, as with input/output, Haskell’'s unconsediorder of evaluation makes it hard to
say what the program means. Suppose we invented a new parnatraise an exception:

throw :: Exception -> a

(t hr owdiffers fromi oEr r or in that it lacks an Oon its result type.) There are two difficul-
ties:

(&) Consider the following expression:
l ength [throw exl1]
Does the expression raise except@xil? Sincel engt h does not evaluate the elements of

its argument list, the answer is presumably “no”.\v8eether an exception is raised depends
on how much evaluation takes place

(b) Which exception does the following expression ragsel orex2?
t hrow exl + throw ex2

The answer clearly depends on the order in which the arguseftt) are evaluated. So
which exception is raised depends on evaluation arder

As with input/output (right back in Section 1), one possibpiis to fully define evaluation order
and, as before, we reject that alternative.

8A pattern-match failure occurs when a function defined bygpatmatching is applied to a value for which no
pattern matches. Example: taking the head of an empty list.
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5.2.1 Imprecise exceptions

The best approach is to take the hint from denotational sgesanThe purely-functional part
of the language should have a straightforward denotatiseaantics, and that requires us to
answer the question: “what value dddsr ow e return?”. The answer must be “an exceptional
value”. So we divide the world of values (or denotationspiotdinary values(like " a’ or

Tr ue or 132) andexceptional valuesThis is not a new idea. The IEEE Floating Point standard
defines certain bit-patterns as “not-a-numbers”, or NaN8lal is returned by a floating point
operation that fails in some way, such as division by zertel'B1lA-64 architecture extends this
ideato arbitrary data types, using “not-a-thing” (NaT)ues to represent the result of speculative
operations that have failed. In our terminology, a NaN or Madn exceptional value.

Sot hr owsimply constructs an exceptional value. It is a perfectl{lAvehaved value provided
you never actually evaluate it; only then is the exceptioge@h The situation is very similar
to that for a divergent (non-terminating) expression inzy llanguage. Useful programs may
contain such values; the program will only diverge if it adty evaluates the divergent term.

That deals with point (a) above, but how about (b)? A goodtgmius to say that the denotation
of an expression is

e A single ordinary value, or

e A setof exceptions.

By making the denotation intosetof exceptions we can finesse the question of which exception
is raised if many could be. Let us return to our troublesonzargde

throw ex1l + throw ex2

The denotation of this expression is now an exceptionalevatinsisting of a set of two excep-
tions,ex1 andex2. In saying this, we do not need to say anything about evalnatider.

| am not suggesting that an implementation should actuadlgstructthe set of exceptions. The
idea is that an implementation can use an entirely convealtiexception-handling mechanism:
when it evaluates an exceptional value, it rolls back theksliaoking for a handler. In effect it
chooses a single member of the set of exceptions to act a&prssentative [16].

5.2.2 Catching an imprecise exception

| describe this scheme as using “imprecise” exceptionsalmse we are deliberately imprecise
about which exception is chosen as the representative. thew, can we catch and handle an
exception? At first we might try a noh©version ofcat ch:

bogusCatch :: a -> (Exception -> a) -> a -- Bogus

bogusCat ch evaluates its first argument; if it is an ordinary vallb®gusCat ch just re-
turns it; if it is an exceptional valudgogusCat ch applies the hander to the exception. But
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bogusCat ch is problematic if the exceptional value contains a set oépions — which mem-
ber of the set should be chosen? The trouble is that if the dengecided to change evaluation
order (e.g. optimisation is switched on) a different exmapmight be encountered, and the
behaviour of the program would change.

A better approach is to separate the choice of which exaeptichrow from the exception-
catching business:

evaluate :: a ->10a

eval uat e x evaluates its argument if the resulting value is an ordinary valueyal uat e
behaves just like et ur n, and just returns the value. Xfinstead returns an exceptional value,
eval uat e chooses an arbitrary member, sayfrom the set of exceptions, and then behaves
just likei oError e; that is, it throws the exceptios. So, for example, consider these four
actions:

al, a2, a3, a4 :: 10 ()

al = do { x <- evaluate 4; print x }

a2 = do { evaluate (head []); print "no" }

a3 = do { return (head []); print "yes" }

a4 = do { xs <- evaluate [1 “div® 0O]; print (length xs) }

The first simply evaluated, binds it tox, and prints it; we could equally well have written
(return 4) instead. The second evaluatesead []), finds an exceptional value, and
throws an exception in theO monad; the followingpr i nt never executes. In contras8
instead returns the exceptional value, ignores it, andgyias. Lastly, a4 evaluates the list
[1 “div' 0], binds it toxs, takes its length, and prints the result. The list contams a
exceptional value, buigval uat e only evalutes the top level of its argument, and does not look
inside its recursive structure (c.f. thengt h example in Section 5.2).

Now consider the case where the argumerg\odl uat e is a set of exceptions; for example
eval uate (throw ex1l + throw ex2)

Sinceeval uat e xisanl/O action (oftypé O t if x hastypd ), there is no reason to suppose
that it will choose the same member from the set of excepgah time you run the program. It
is free to perform input/output, so it can consult some ewkoracle (whether it is raining, say)
to decide which member of the set to choose. More concreteppose we catch the exception
like this:

catch (evaluate (throw exl + throw ex2)) h

(Recall thatcat ch and its semantics was defined in Section 5.1.) The hahdlell be applied
to eitherex1 or ex2, and there is no way to tell which. Itis up &val uat e to decide. This
is different frombogusCat ch, because the non-deterministic choice is made by an I/@racti
(eval uat e) and not by a pure functiolbfgusCat ch). I/O actions are not required to return
the same result given the same input, whereas pure funarendn practiceeval uat e will
notreally be non-deterministic; the decision is really taken by tredation order chosen by the
compiler when it compiles the argumentdeal uat e.
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V o= ...|evaluate M

E[M] =0k V
{Eleval uate M|}, — {EfreturnV]} (EVALI)
E[M] = BadS ec S
{E[eval uate M|}, — {E[i oError ]}, (EVALZ)
EM]=0kV M#V
€y, = (Evpy, SOV
E[M]=BadS ecS (FUN2)

{E[M]}+ — {E]i oError e|},

M#(Nl >>:N2) M% (CatCh Ny Ng)

T ithrowTot e}, [{E.[MIh — {Eireturn ()]h [{Eli 0B ror o, (VT

Figure 10: Further extensions for exceptions

Notice what we have done:

e An exception can beaisedanywhere, including in purely-functional code. This istien-
dously useful. For example, pattern-match failure can reigeran exception rather than
bringing execution to a halt. Similarly, Haskell 98 provédefunctiorer r or :

error :: String -> a

Whener r or is called, the string is printed, and execution comes tota lmabur extended
version of Haskeller r or instead raises an exception, which gives the rest of thaanog
a chance to recover from the failure.

An exception can only beaughtby cat ch, which is in thel Omonad. This confines
recovery to the monadic-1/O layer of the program, unlike Mhay) where you can catch
an exception anywhere. In my view, this restriction is nké@me, and has great semantic
benefits. In particulahy confining the non-deterministic choice to th@monad we have
prevented non-determinism from infecting the entire laugu

5.2.3 Semantics of imprecise exceptions

This approach to synchronous exceptions in Haskell is destin much more detail in [37].
In particular, the paper describes how to extend a standamdtdtional semantics to include
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exceptional values, something we have not treated fornhaltg. We will not discuss that here,
for lack of space, but will content ourselves with saying the meaning functio&[M] returns
eitherOFk v for an ordinary value, or Bad S for an exceptional value, whereis a non-empty
set of exceptions. For example, here is the semantics ofiauldi

g[[61+62]] = g[[61]] +, 5[[62]]
where+' is an addition function defined over the semantic domain hfes thus:

(Okvy) +' (Okwvy) = Ok (vy + v9)
(Okvy) +' (Badss) = Bad sg
(Bad s1) +' (Okwve) = Bad s,
(Bad s1) +' (Bad ss) = Bad (s1U sg)

The first equation deals with the normal case. The secondhartideal with the case when
one or other of the arguments throws an exception. The lasttimon handles the case when both
arguments throw an exception; in this casdakes the union of the exceptions that can be thrown
by the two arguments. The whole point is thdtis commutative, so tha[e;+es] = Efeate].

Given this, Figure 10 gives the extra semanticsefeal uat e. If the argument teeval uat e
is an ordinary valuegval uat e just returns that value (EVAL1); if the value is an excepébn
value,eval uat e chooses an arbitrary member of the set of exceptions, ao@shthat ex-
ception using oEr r or . This deliberately-unconstrained choice is where the determinism
shows up in the operational semantics.

Sincef[] has changed we must do something to rule (FUN). This is a plhege our semantics
forces us to recognise something we might otherwise hagefian. Rules (FUN1) and (FUN2)
replace (FUN). (FUN2) says that if the next action to perfasntself an exceptional value, then
we should just propagate that asla@monad exception usingoEr r or . If it is not, then we
behave just like (FUN). Here is an example that shows the itapoe of this change:

catch (if (1/0) then al el se a2) recovery_code

Beforecat ch can perform the action that is its first argument, it must st it; in this case,
evaluating it gives divide-by-zero exception, and rule KA) propagates that into aroEr r or .

The Except i on data type is really the same BOEr r or , except that I' CEr r or ” does not
seem an appropriate name any more. To keep things simpleystsgy that OErr or is a
synonym forExcept i on. To summarise, we now have the following primitives:

type | CError = Exception

t hr ow .. Exception -> a

evaluate :: a ->10a

ioError :: ICError ->10a

catch . 1Oa -> (Exception ->10a) ->10a
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5.3 Asynchronous exceptions

We now turn our attention to asynchronous exceptions. Rarasonous exceptions, we add the
following new primitive:

throwlo :: Threadld -> Exception -> 10 ()

This allows one thread to interrupt another. So far as therriapted thread is concerned, the
situation is just as if it abruptly calledoEr r or ; an exception is raised and propagated to the
innermost enclosingat ch. This is where th&'hr eadl d of a forked thread becomes really
useful: we can use it as a handle to send an interrupt to anibitead. One thread can raise an
exception in another only if it has the latte&ir eadl d, which is returned by or kl O. So a
thread is in danger of interruption only from its parent,asdlits parent passes onTtsr ead| d

to some other thread.

5.3.1 Using asynchronous exceptions

Usingt hr owTo we can implement a variety of abstractions that are otheniviaccessible.
For example, we can program the combinatar | O, which “races” its two argument actions
against each other in parallel. As soon as one terminatiefisithe other, and the overall result
is the one returned by the “winner”.

parlO:: IOa ->10a ->10a

How can we implement this? We can use an MVar to contain theafivesult. We spawn two
threads, that race to fill the result MVar; the first will suedewhile the second will block. The
parent takes the result from the MVar, and then kills botldcan:

parlO:: IOa ->10a ->10a
parl O al a2
= do { m<- newknptyWar ;
cl <- forklO (child mal) ;
c2 <- forklO (child ma2) ;
r <- takeMvar m;
throwTo cl Kill ;
throwTo c2 Kill ;
return r
}
wher e
child ma=do{r < a; putWwar mr }

Usingpar | Owe can implement a simple timeout:
tinmeout :: Int ->10a ->10 (Maybe a)

The idea here isthtt i meout n a) returnsNot hi ng if a takes longer than microseconds
to complete, andust r otherwise, where is the value returned by:
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timeout :: Int ->10a ->10 (Maybe a)
timeout na =parlO(do { r <- a; return (Just r) })
(do { threadDelay n; return Nothing })

Now we might want to answer questions like this: what happlesmshread is interrupted (via a
t hr owTo) while it is executing under a timeout? We can't say for suré we give a semantics
tot hr owTo, which is what we do next.

5.3.2 Semantics of asynchronous exceptions

We can express the behaviourtdir owTo nicely in our semantics: ahr owTo in one thread
makes the target thread abandon its current action ancceephaithi oEr r or :

M#(N1>>:N2) M#(CatCh Ny Ng)

{E;[t hrowTo te]}s | {Ex[M]}: — {Eq[return ()]}s | {Ex[i oError e]}, (INT)

(“(INT)” is short for “interrupt”.) The conditions above éhline are essential to ensure that the
contextl, is maximal; that is, it includes all the actieat ches.

It should be clear that external interrupts, such as thepgssing Control-C, can also be mod-
eled in this way. Before we can write the semantics we havaswar several questions. Does
a Control-C interrupt every thread, or just a designateeati? If the latter, how does a thread
get designated? These are good questions to be forced temm®rause they really do make a
difference to the programmer.

Having a semantics is very helpful in answering questioks: liwhat happens if a thread is
interrupted when it is blocked waiting for awar ? In the semantics, such a thread is simply
stuck, with at akeMvar at the active site, so (INT) will cause theakeMar to be replaced
with i oEr r or . So being blocked on awvar doesn’t stop a thread receiving an interrupt.

Now we can say what happens to a thread that executes a sya#aiion using i neout
but is interrupted byt hr owTo while it is waiting for the sub-computation to complete. The
parent thread receives the interrupt while it is blockedlmn‘t akeMvar ni inside par| O
(Section 5.3.1); so it abandons the wait and proceeds tomtiermostat ch handler. But that
means that the two threads spawneghy | Oare not killed, and we probably want them to be.
So we have to go back to fix ypar | Osomehow. In fact this turns out to be tricky to do: we
have to make sure that there is no “window” in which the pahest spawned a child thread but
has not set up a handler that will kill the child if the pareniniterrupted.

Indeed, programming in the presence of asynchronous emospt notoriously difficult, so
much so that Modula-3, for example, simply outlaws themst@ad, well-behaved threads reg-
ularly poll analert flag, and commit suicide if it is set [33].) Haskell differ®fn Modula in two
ways that are relevant here. First, there are fewer sidetsffso there are fewer windows of vul-
nerability to worry about. Second, there are large partaoély-functional code that we would
like to be able to interrupt — and can indeed do so safely — there any polling mechanism
would be very undesirable. These considerations led usfioedeew primitive combinators to
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allow a thread to mask and un-mask external interrupts. fliniser complicates the semantics,
but as a result we can write code where we have a changewihgthat it has no race hazards.
The details are in [29].

5.4 Summary

This section on exceptions is the most experimental of oun theemes. Two papers, [37, 29],
give a great deal more detail on the design, which | havedioized here only in outline. Indeed,
some aspects of the asynchronous-exceptions designlane fiitix at the time of writing.

Adding exceptions undoubtedly complicates the languageitanrsemantics, and that is never
desirable. But they allow a qualitative change in the ratess of a program. Now, if there is
a pattern match failure almost anywhere in the code of the seeler, the system can recover
cleanly. Without exceptions, such a failure would be fatal.

6 Interfacing to other programs

In the programming-language world, one rule of survivalng@e: dance or die. It is not enough
to make a beautiful language. You must also make it easy t@grpms written in your beautiful
language to interact with programs written in other langasaglava, C++, and C all have huge,
and hugely useful, libraries available. For example, our server makes extensive use of socket
I/O libraries written in C. It is fruitless to reproduce maofythese libraries in Haskell; instead,
we want to make it easy to call them. Similarly, if we want tagph small Haskell program into
a large project, it is necessary to enable other programalit¢iaskell. It is hubristic to expect
the Haskell part to always be “on top”.

Haskell 98 does not specify any way to call foreign-langya@eedures, but there has been a lot
of progress on this front in the last few years, which | surnvethis section. In particular, a pro-
posal has emerged for a Haskell language extension to sufppeign-language interfacing. We
will call this proposalthe Haskell Foreign Function Interface (FFI) proposélis documented
athttp://haskel |l .org/definition/ffi.

6.1 Calling C from Haskell, and Haskell from C

Here is how you can call a C procedure from Haskell, under fHepFoposal:
foreign inmport ccall putChar :: Char -> 10 ()

Thef or ei gn declaration brings into scope a Haskell functjpmt Char with the specified
type. When this function is called, the effect is to call a ©qadure, also calledut Char .
Simple, eh? The complete syntax is given in Figure 11. THevahg points are worth noting:
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decl == foreign inport callconv [safety] imp_entity varid: : ftype
| foreign export callconv [safety] exp_entity varid: : ftype

callconv = ccall | stdcall | ...other calling conventions...
safety = safe | unsafe
imp_entity = [string]
exp_entity = [string]
ftype == () | 1 Ofatype | fatype | fatype - > ftype

I nt | Fl oat | Doubl e | Char | Bool
Ptr type | FunPtr type | Stabl ePtr type
Int8 | Intl16 | Int32 | I nt64

Word8 | Wrdl16 | Wrd32 | Wr d64

A Haskellnewt ype of a fatype

A Haskell type synonym for gutype

fatype

Figure 11: The Haskell FFI proposal syntax

e As usual, we use theOmonad in the result type gfut Char to indicate thaput Char
may perform I/O, or have some other side effect. Howeverestareign procedures may
have purely-functional semantics. For example, tred @ function really is a function: it
has no side effects. In this case it is extremely tiresomeriefit to be in thd Omonad.
So the Haskell FFI allows one to omit the@’ from the return type, thus:

foreign inmport ccall sin :: Float -> Float

The nont Otype indicates that the programmer takes on a proof obtigatn this case
that foreign procedure is genuinely functional.

e The keyword €cal | ” indicates the calling convention to use; that is, whichuangnts
are passed in which registers, which on the stack, wheresthdtris returned, and so on.
The only other currently-defined calling convention at thenment is ‘st dcal | ”, used
on Win32 platforms.

¢ If the foreign procedure does not have the same name as iteelHasunterpart — for
example, it might start with a capital letter, which is ile#dor Haskell functions — you
can specify the foreign name directly:

foreign inmport ccall "PutChar” putChar :: Char -> 10 ()
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e Foreign procedures may take several arguments. Their Hagbeis curried, as is usually
the case for multi-argument Haskell functions, but on thed@ the arguments are passed
all at once, as is usual for C:

foreign inmport ccall drawtine :: Int ->1Int -> 10 ()

e There is a strictly limited range of Haskell types that cambed in arguments and results,
namely the “atomic” types such ast , Fl oat , Doubl e, and so on. So how can we pass
structured types, such as strings or arrays? We addresgigssion in Section 6.3.

¢ An implementation of the FFI proposal must provide a coiteciof new atomic types
(Figure 11). In particularPt r ¢ is the type of uninterpret€dmachine addresses; for
example, a pointer to@al | oc’d structure, or to a C procedure. The typis a “phantom
type”, which allows the Haskell programmer to enforce thatidction between (say) the
typesPt r Foo andPtr Baz. No actualialuesof typeFoo or Baz are involved.

“f orei gn inport”letsyou call aC procedure from Haskell. Dually,dr ei gn export”
lets you expose a Haskell function as a C procedure. For eeamp

forei gn export ccall "Foo" foo :: Int -> Int
forei gn export ccall bar :: Float -> 10 Fl oat

These declarations are only valid if the same module deforamports) Haskell functionsoo
andbar , which have the specified types. An exported function malzat Otype, but it does
not have to — herdyar does, and oo does not. When the module is compiled, it will expose
two procedured-oo andbar , which can be called from C.

6.2 Dynamic calls

It is quite common to make andirect call to an external procedure; that is, one is supplied with
the address of the procedure and one wants to call it. An ebeaimthe dynamic dispatch of a
method call in an object-oriented system, indirecting tigtothe method table of the object.

To make such an indirect call from Haskell, use dyasnam c keyword:

foreign inmport ccall "dynam c"
foo :: FunPtr (Int ->101Int) ->1Int -> 10 Int

The first argument must be of typaunPt r ¢, and is taken to be the machine address of the
external procedure to be called. As in the casBtaf ¢, the typet is used simply to express the
distinction between pointers to procedures of differepes;

There is also a way to export a dynamic Haskell value:

%“Uninterpreted” in the sense that they are treated simphyjitgsatterns. The Haskell garbage collector does not
follow the pointer.
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foreign inmport ccall "wapper”
nkCB :: (Int ->101Int) -> 10 (FunPtr (Int -> 10 1Int)

This declaration defines a Haskell functiarkCB. When nkCB is given an arbitrary
Haskell function of type(Int->1OInt), it returns a C function pointer (of type
FunPtr (Int -> 10 Int))thatcan be called by C. Typically, thiaunPt r is then some-
how passed to the C program, which subsequently uses itlttheaHaskell function using a C
indirect call.

6.3 Marshalling

Transferring control is, in some ways, the easy bit. Tramisfg data “across the border” is much
harder. For “atomic” types, such asit andFl oat , it is clear what to do, but for structured
types, matters are much murkier.

For example, suppose we wanted to import a function thatad@gion strings:

foreign inmport ccall uppercase :: String -> String

e First there is the question of data representation. Onedadedide either to alter the
Haskell language implementation, so that its string regaregion is identical to that of C,
or to translate the string from one representation to amathein time. This translation is
conventionally calleanarshalling

Since Haskell is lazy, the second approach is required. yncase, it is tremendously
constraining to try to keep common representations betweetanguages. For example,
C terminates strings with a null character, but other laggganay keep a length field.
Marshalling, while expensive, serves to separate the im@hgation concerns of the two
different languages.

e Next come questions of allocation and lifetime. Where stioeé put the translated string?
In a static piece of storage? (But how large a block shouldllweate? Is it safe to re-use
the same block on the next call?) Or in Haskell's heap? (Butwitthe called procedure
does something that triggers garbage collection, and @éimsfiormed string is moved? Can
the called procedure hold on to the string after it returt@n C'snal | oc’d heap? (But
how will it get deallocated? Andal | oc is expensive.)

e C procedures often accept pointer parameters (such agstthmat can b&ULL. How is
that to be reflected on the Haskell side of the interface? ¥kamele, ifupper case did
something sensible when called witiNalLL string (e.g. returns BIULL string) we might
like the Haskell type foupper case to be

foreign inmport ccall uppercase :: Maybe String -> Maybe String

so that we can mod@&ULL by Not hi ng.
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The bottom line is this: there are many somewhat-arbitrlniaes to make when marshalling
parameters from Haskell to C and vice versa. And that's onlyl@&re are even more choices
when we consider arbitrary other languages.

What are we to do? The consensus in the Haskell communitysis th

We define danguage extensiothat is as small as possible, and buskparate tools
to generate marshalling code.

Theforeign i nport andforei gn export declarations constitute the language exten-
sion. They embody just the part of foreign-language cabs tannot be done in Haskell itself,
and no more For example, suppose you want to import a procedure thatsdadine, whose C
prototype might look like this:

void DrawLi ne( float x1, float yl, float x2, float y2 )
One might ideally like to import this procedure with the tlling Haskell signature.

type Point = (Float, Fl oat)
drawLine :: Point -> Point -> 10 ()

The FFI proposal does not let you do this directly. Instead lyave to do some marshalling
yourself (in this case, unpacking the pairs):

type Point = (Float, Fl oat)

drawLine :: Point -> Point -> 10 ()
drawLi ne (x1,yl) (x2,y2) = dl _help x1 yl1 x2 y2

foreign inmport ccall "DrawLine"
dl _help :: Float -> Float -> Float -> Float -> 10 ()

Writing all this marshalling code can get tedious, espgcighen one adds arrays, enumerations,
in-out parameters passed by reference, NULL pointers, arahs There are now several tools
available that take some specification of the interface patjnand spit out Haskell code as
output. Notably:

Green Card [34] is a pre-processor for Haskell that reads directivebetided in a Haskell
module and replaces these directives with marshalling.cddang Green Card one could
write

type Point = (Float, Fl oat)
drawLine :: Point -> Point -> 10 ()
%all (float x1, float yl) (float x2, float y2)
%ode DrawlLi ne( x1, yl1l, x2, y2)
Green Card is C-specific, and doesn’t handle the foreigmmgide of things at all.
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C- >Haskel | [8] reads both a Haskell module with special directives (ointling hooks”)
and a standard C header file, and emits new Haskell modulealitiie marshalling code
added. The advantage compared to Green Card is that lessatfon need be specified
in the binding hooks than in Green Card directives.

H/Direct [10] instead reads a description of the interface writteinierface Definition Lan-
guage(IDL), and emits a Haskell module containing the marshgltode. IDL is a huge
and hairy language, but it is neither Haskell-specific nap&eific. H/Direct deals with
both import and export, can read Java class files as well asil€¥, and can generate code
to interface to C, COM, and Java.

It is well beyond the scope of these notes to give a detaileddoction to any of these tools
here. However, in all cases the key point is the saarg. of these tools can be used with any
Haskell compiler that implements th@r ei gn declaration The very fact that there are three
tools stresses the range of possible design choices, and tlembenefit of a clear separation.

6.4 Memory management

One of the major complications involved in multi-languagegrams is memory management.
In the context of the Haskell FFI, there are two main issues:

Foreign objects. Many C procedures return a pointer or “handle”, and expeetctlent tofi-
naliseit when it is no longer useful. For example: opening a file me$ia file handle that
should later be closed; creating a bitmap may allocate soemaary that should later be
freed; in a graphical user interface, opening a new window,ew font, returns a handle
that should later be closed. In each case, resources acatakb(memory, file descriptors,
window descriptors) that can only be released when thetadgplicitly says so. The term
finalisationis used to describe the steps that must be carried out wheegbarce is no
longer required.

The problem is this: if such a procedure is imported into akdthgrogram, how do we
know when to finalise the handle returned by the procedure?

Stable pointers. Dually, we may want to pass a Haskell value into the C worldhegi by
passing it as a parameter tof @r ei gn i nport, or by returning it as a result of a
forei gn export. Here, the danger is not that the value will live too long, that
it will die too soon: how does the Haskell garbage collectoow that the value is still
needed? Furthermore, even if it does know, the garbagectmilenight move live ob-
jects around, which would be a disaster if the address of ldhéooation of the object is
squirreled away in a C data structure.

In this section we briefly survey solutions to these diffiadt

51



6.4.1 Foreign objects

One “solution” to the finalisation problem is simply to reguthe Haskell programmer to call
the appropriate finalisation procedure, just as you woul@.ifThis is fine, if tiresome, for I/O
procedures, but unacceptable for foreign libraries the¢ fpairely functional semantics.

For example, we once encountered an application that uselibaa@/ to manipulate bit-maps
[39]. It offered operations such as filtering, thresholdiagd combining; for example, to ‘and’
two bit-maps together, one used the C procedureé bnp:

bitmap *and_bnp( bitmap *bl, bitmap *b2 )

Here,and_bnp allocates a new bit-map to contain the combined image, ngavi andb2
unaffected. We can impoand_bnp into Haskell like this:

data Bitmap = Bitmap -- A phantomtype
foreign inport ccall
and_bnp :: Ptr Bitmap -> Ptr Bitmap -> 1O (Ptr Bitmap)

Notice the way we use the fresh Haskell tyBet nap to help ensure that we only give to
and_bnp an address that is the address of a bitmap.

The difficulty is that there is no way to know when we have fieghvith a particular bit-map.
The result of a call tand_bnp might, for example, be stored in a Haskell data structure for
later use. The only time we can be sure that a bitmap is no tamgeded is when the Haskell
garbage collector finds that i& r is no longer reachable.

Rather than ask the garbage collector to tracktll s, we wrap up thet r in aforeign pointer
thus:

newForei gnPtr :: Ptr a -> 10 () -> 10 (ForeignPtr a)

newFor ei gnPtr takes a C-world address, and a finalisation action, and nmetw
For ei gnPt r . When the garbage collector discovers that fos ei gnPt r is no longer ac-
cessible, it runs the finalisation action.

To unwrap a foreign pointer we use t hFor ei gnPt r:
w t hForeignPtr :: ForeignPtr a -> (Ptr a ->10b) ->10bDb

(We can’t simply unwrap it with a function of typgeéor ei gnPtr a -> 1O Ptr a because
then the foreign pointer itself might be unreferenced afterunwrapping call, and its finaliser
might therefore be called before we are done withRhe .)

So now we can impordd_bnp like this:

foreign inmport ccall "and_bnp"
and_bnp_help :: Ptr Bitmap -> Ptr Bitmap -> 10 (Ptr Bitnap)

foreign inmport ccall free_bnp :: Ptr Bitmap -> 10 ()
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and_bnp :: ForeignPtr Bitmap -> ForeignPtr Bitmap -> IO (ForeignPtr Bit

and_bnp bl b2 = withForeignPtr bl (\ p1->
wi t hForei gnPtr b2 (\ p2 ->
do { r <- and_bnp_help pl p2
newForei gnCbj r (free_bmp r) }))

The functionand_bnp unwraps its argumerfor ei gnPt r s, callsand_bnp_hel p to get
the work done, and wraps the result back up Foaei gnPtr .

6.4.2 Stable pointers

If one wants to write a Haskell library that can be called by @r@gram, then the situation
is reversed compared to foreign objects. The Haskell §bnaay construct Haskell values and
return them to the C caller. There is not much the C prograndcawith them directly (since
their representation depends on the Haskell implememnbatbwt it may manipulate them using
other Haskell functions exported by the library.

As we mentioned earlier, we cannot simply return a pointtr ihe Haskell heap, for two rea-
sons:

e The Haskell garbage collector would not know when the obigceto longer required.
Indeed, if the C program holds tlualy pointer to the object, the collector is likely to treat
the object as garbage, because it has no way to know what Haskgers are held by the
C program.

e The Haskell garbage collector may move objects around (Gld@llector certainly does),
so the address of the object is not a stable way to refer toldjeeto

The straightforward, if brutal, solution to both of theselgems is to provide a way to convert a
Haskell value into &table pointer

newst abl ePt r . a->10 (StablePtr a)
deRef Stabl ePtr :: StablePtr a -> 10 a
freeStablePtr :: StablePtr a -> 10 ()

The functionnewSt abl ePt r takes an arbitrary Haskell value and turns it into a stabietpg
which has two key properties:

e First, it is stable; that is, it is unaffected by garbage extibn. ASt abl ePt r can be
passed to C as a parameter or result fmaei gn i nport or af orei gn export.
From the C side, &t abl ePtr looks like ani nt. The C program can subsequently
pass the stable pointer to a Haskell function, which can gé&teaoriginal value using
deRef St abl ePt r.

e Second, callinghewSt abl ePtr v registers the Haskell value as a garbage-collection
root, by installing a pointer to in the Stable Pointer Tabl¢SPT). Once you have called
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newsSt abl ePtr v, the valuev will be kept alive indefinitely by the SPT, evenuf or
even theSt abl ePt r itself are no longer reachable.

How, then, carv ever die? By calling r eeSt abl ePt r: This removes the entry from
the SPT, s&w can now die unless it is referenced some other way.

Incidentally, the alert reader may have noticed that ei gn i nport "w apper", de-
scribed in Section 6.2, must use stable pointers. Takingxtaeple in that sectiomk CB turns

a Haskell function value into a pla#ddr , the address of a C-callable procedure. It follows that
nkCB f must registef as a stable pointer so that the code pointed to byAtdr (which the
garbage collector does not follow) can refer to it. Wait a mbéh How can we free the stable
pointer that is embedded inside tatdr ? You have to use this function:

freeHaskel | FunctionPtr :: Addr -> 10 ()

6.5 Implementation notes

It is relatively easy to implement tHeor ei gn i nmpor t declaration. The code generator needs
to be taught how to generate code for a call, using appr@pc&iting conventions, marshalling
parameters from the small, fixed range of types required byFti. Thedynam c variant of
foreign inport isno harder.

A major implementation benefit is that all the 1/O librarieancbe built on top of such
forei gn inports;thereis no need for the code generator to geatChar , say, as a prim-
itive.

Matters are not much harder fbor ei gn expor t ; here, the code generator must produce a
procedure that can be called by the foreign language, agaisiralling parameters appropriately.
foreign inmport "wrapper" is tricker, though, because we have to generate a single,
static address that encapsulates a full Haskell closure.ofly way to do this is to emit a little
machine code at run-time; more details are given in 11]

6.6 Summary and related work

So far | have concentrated exclusively on interfacing taypans written in C. Good progress
has also been made for other languages and software atahgtgc

COM is Microsoft's Component Object Model, a language-indelgen, binary interface for
composing software components. Because of its languagpémtlence COM is a very
attractive target for Haskell. H/Direct directly suppobtsth calling COM objects from
Haskell, and implementing COM objects in Haskell [36, 10, 24].

01 that paperf or ei gn i mport "wr apper" is called ‘f or ei gn export dynamni c¢”; the nomencla-
ture has changed slightly.
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CORBA addresses similar goals to COM, but with a very differenaibbe¢ of design choices.
H/Direct can read CORBA's flavour of IDL, but cannot yet geaterthe relevant mar-
shalling and glue code. There is a good CORBA interface ®fuhctional/logic language
Mercury, well described in [20].

Lambada [30] offers a collection of Haskell libraries that makes dtsg to write marshalling
code for calling, and being called by, Java programs. Larmlaégb offers a tool that reads
Java class files and emits IDL that can then be fed into H/Dioegenerate the marshalling
code. There is ongoing work on extending thar ei gn declaration construct to support
Java calling conventions.

The actual Haskell FFI differs slightly from the one give étein particular, there are many
operations over the type&ldr , For ei gnQbj andSt abl ePt r that | have omitted. Indeed,
some of the details are still in flux.

Finalisation can be very useful even if you are not doing mhileaguage working, and many
languages support it, including Java, Dylan, Python, Seheand many others. Hayes gives
a useful survey [13], while a workshop paper gives more etbout the Glasgow Haskell
Compiler’s design for finalisers [28].

This section is notably less thorough and precise thaneeagéictions. | have given a flavour
of the issues and how they can be tackled, rather than a etbtadatment. The plain fact is

that interfacing to foreign languages is a thoroughly hainyerprise, and no matter how hard
we work to build nice abstractions, the practicalities andaubtedly complicated. There are
many details to be taken care of; important aspects difftanfoperating system to operating
system; there are a variety of interface definition langad@eheader files, IDL, Java class files
etc); you have to use a variety of tools; and the whole areaoimg quickly (e.g. the recent

announcement of Microsoft's .NET architecture).

7 Have we lost the plot?

Now that we have discussed the monadic approach in some, getaimay well be asking the

following question: once we have added imperative-lookimgut/output, concurrency, shared
variables, and exceptions, have we not simply re-inventextigld procedural programming?
Have we “lost the plot” — that is, forgotten what the origimgalals of functional programming

were?

| believe not. The differences between conventional proddgrogramming and the monadic
functional style remain substantial:

e There is a clear distinction, enforced by the type systerydenactionswhich may have

side effects, andunctionswhich may not. The distinction is well worth making from a
software engineering point of view. A function can be untterd as an independent entity.
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It can only affect its caller through the result it returnsh&ever it is called with the same
arguments it will deliver the same result. And so on.

In contrast, the interaction of an action with its caller @mplex. It may read or write
War s, block, raise exceptions, fork new threads... and noneesit things are explicitin
its type.

No reasoning laws are lost when monadic I/O is added. For pbant remains uncondi-
tionally true that
let z=einbd = ble/z]

There are no side conditions, such agrfust not have side effects”. (There is an important
caveat, though: I am confident that this claim is true, butiehaot proved it.)

In our admittedly-limited experience, most Haskell pragsaconsist almost entirely of
functions, not actions: a small monadic-1/O “skin” surrdsna large body of purely-
functional code. While it is certainly possible to write adiell program that consists
almost entirely of I/O, it is unusual to do so.

Actions are first class values. They can be passed as argsitoeininctions, returned as
results, stored in data structures, and so on. This givesuahtiexibility to the program-
mer.

Another good question is this: is th& monad a sort of “sin-bin”, used whenever we want to
do something that breaks the purely-functional paradigm@ldwe be a bit more refined about
it? In particular, if we argue that it is good to know from tlygpé of an expression that it has
no side effects, would it not also be useful to express inype some limits on the side effects
it may cause? Could we have a variantl @ that allowed exceptions but not 1/0? Or I/O but
not concurrency? The answer is technically, yes of courserdis a long history of research
into so-calledeffect systemdhat track what kind of effects an expression can have [3iich
effect systems can be expressed in a monadic way, or mariiedwnonadic type system [51].
However, the overhead on the programmer becomes greatkrdamnot know of any language
that uses such a systéimAn interesting challenge remains, to devise a more refigsts that
is still practical; there is some promising work in this ditien [6, 51, 45, 5]. Meanwhile | argue
that a simple pure-or-impure distinction offers an exc#lst/benefit tradeoff.

8 Summary

We have surveyed Haskell’s monadic I/O system, along witbelsignificant language exten

siong?. It is easy to extend a language, though! Are these extemsion good? Are they just

1Some smart compilers use type-based effect systems to thedeoptimisers, but that is different from the
programmer-visible type system.

12| describe them all as “language extensions” because, wbite has a significant impact on Haskell's syntax
or type system, all have an impact on its semantics and ingiéation
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anad hocset of responses to ad hocset of demands? Will every new demand lead to a new
extension? Could the same effect be achieved with somesimmgler and more elegant?

| shall have to leave these judgments to you, gentle readeesé notes constitute a status re-
port on developments in the Haskell community at the time ofing. The extensions | have
described cover the needs of a large class of applicationdyedieve we have reached at least a
plateau in the landscape. Nevertheless the resulting &égegs undeniably complicated, and the
monadic parts have a very imperative feel. | would be dedidhb find a way to make it simpler
and more declarative.

The extensions are certainly practical — everything | descis implemented in the Glasgow
Haskell compiler — and have been used to build real apptinati

You can find a great deal of information about Haskell on thé Vée

http:// haskell.org

There you will find the language definition, tutorial matériaook reviews, pointers to free
implementations, details of mailing lists, and more beside
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