
Lambda Calculus Cheat Sheet – continued

CSC 131

September 12, 2006

1 Booleans

true = λu. λv. u.
false = λu. λv. v.
cond = λu. λv. λw. u v w.

2 Data structures

Pair = λm. λn. λb. cond b m n.
fst = λp. p true
snd = λp. p false

3 Natural numbers and arithmetic

0 = λ s. λ z. z.
1 = λ s. λ z. s z.
2 = λ s. λ z. s (s z).

. . .
n = λ s. λ z. s (s (s (. . . (s z) . . .))),

where the right hand side of the last line includes n occurrences of s.
Notice that n f x = fn(x)
The successor function adds an extra application of successor to a number.
Succ = λ n. λ s. λ z. s (n s z).

Thus Succ n = n+1. With successor, it is easy to define addition, multiplication,
and a test for zero:

Plus = λ n. λ m. λ s. λ z. m s (n s z).
Mult = λ n. λ m. m (Plus n) 0.

isZero = λ n. n (λ x. false) true.
Thus

Plus n m = λ s. λ z. m s (n s z)
= λ s. λ z. sn(sm(z))
= λ s. λ z. sn+m(z)
= n+m.

while

1

Mult n m = m (Plus n) 0
= (Plus n)m 0
= n*m.

Also, isZero 0 = true because the constant function λ x. false is never
applied, while isZero n = false when n > 0 because the constant function
will be applied at least once.

Finding the predecessor of a number is tricky. Start by providing a new
encoding of numbers as pairs:

PZero = <0,0> = Pair 0 0
PSucc = λ n. Pair (snd n) (Succ(snd n))

Therefore n is encoded as Pair (n-1) n.
Now define the predecessor function:
Pred = λn. fst (n PSucc PZero).

The definition of subtraction is easily obtained.

4 Recursion

Define
Y = λf. (λx. f(xx))(λx. f(xx))

Y is called the fixed-point combinator because for all g, we get Y g = g(Y g).
Thus Y g is a fixed point of g for any function g.

Recall the definition of factorial:
fact = λ n. cond (isZero n) 1 (Mult n (fact (Pred n)))

Define F by
F = λ f. λ n. cond (isZero n) 1 (Mult n (f (Pred n)))

then F(fact) = fact. Because fact is a fixed point of F, define
fact = Y F.
Here are some values of fact.
fact 0 = (F (fact)) 0 because fact is a fixed point of F

= cond (isZero 0) 1 (Mult 0 (fact (Pred 0))) expanding F
= 1 by the definition of cond

fact 1 = (F (fact)) 1 because fact is a fixed point of F
= cond (isZero 1) 1 (Mult 1 (fact (Pred 1))) expanding F
= Mult 1 (fact (Pred 1)) by the definition of cond
= fact 0 by the definition of Mult and Pred
= 1 by the above calculation

fact 2 = (F (fact)) 2 because fact is a fixed point of F
= cond (isZero 2) 1 (Mult 2 (fact (Pred 2))) expanding F
= Mult 2 (fact (Pred 2)) by the definition of cond
= Mult 2 (fact 1) by the definition of Pred
= Mult 2 1 by the above calculation
= 2 by the definition of Mult

2

