Lecture 3: Halting Problem
& LISP

CSC 131
Fall, 2014

Kim Bruce

Decidable Problems

* A yes/no question about all values x is decidable
iff there is an algorithm A that given any input
x, always halts after a finite amount of time and
gives the correct answer.

 Has to eventually stop for all inputs x

 Has to always give the right answer

Undecidable Problems

e Can we come up with a general program so that
for any program P and any input x, it will tell us
whether on not P halts on x?

e Called the Halting Problem

e Proved undecidable by Turing (o algorithm to decide)
» Holds for any sufficiently complex language

e Clearly solvable if language has no control constructs (e.g.,
loops, goto, recursion, etc.)

Solving Halting?

* Suppose H is a function that solves the halting
problem (in your favorite PL):

- H takes two string arguments P and x, and H(Px)
returns true iff P is a legal program and when P is run
with input x, then P(x) halts.

- Returns false otherwise (P not halt, P not legal, etc.)

- Note H must stop in a finite amount of time with the
correct answer.

- Show by contradiction that there can’t be such an H.

Diagonalizing Diagonalizing

e Consider D(D):
* Given H(Px), define D(P) to be the following

program:

Run H(D,D). It is guaranteed to stop with an answer.

. . If it returns true, loop forever, otherwise halt.
- Run H(PP). It is guaranteed to stop with an answer.

e Thus, if D(D) halts, then D(D) runs forever
- If it returns true, loop forever, otherwise halt.
¢ If D(D) doesn’t halt then D(D) stops
e Thus, if P(P) halts, then D(P) runs forever
Contradiction!!!
o If P(P) doesn’t halt then D(P) stops
Hence there cannot be such an H.

o Note we aren’t executing P(P), just asking H(PP).

Halting problem is undecidable.

Everything Interesting is Proving Problems
Undecidable Undecidable

e Examples: * Reduction Proofs:

- Will program eventually divide by o? - Assume there is an algorithm A’ to solve new

problem.

Will program eventually dereference a null pointer?

- Show that can use A’ to solve halting problem.

Will program touch a particular piece of memory?

- Contradiction shows A’ can’t exist.

Will program ever print out o?

Example

* Show no algorithm to determine if program Q
halts for any input (at least one).

- Suppose A(Q) always halts and returns yes iff Q halts

for some input.

- Build algorithm to solve halting problem

¢ Given input P, w for halting, build new program P,, that
ignores its input and then simulates P on input w.

o Le., replace read statement by assigning value w to vble.
¢ Then A(P,) returns yes iff P halts on w
e because all runs of Py are the same!! So if any accepted, so are all.

Solves halting problem: contradiction!!!
Hence there cannot be such an A’

LISP and Scheme
(Racket)

Language Design

e For each language you learn, consider:
- Motivating applications
- Abstract machine

- Theoretical foundations

LISP & Scheme

* Developed in late 50’s by John McCarthy
- McCarthy won Turing award in 1971
- See McCarthy “History of Lisp” on web.

e Support for AI programming
- Symbolic differentiation, language processing
- Emacs written in LISP

- Almost cult-like fervor, even though most Al
programming now in other languages.

LISP Features

- Compute w/symbolic expressions instead of numbers
- Representation of expressions as (nested) lists

- Small set of selector and constructor ops expressed as
functions. Composition to compose functions.

- Use of conditional expressions for branching

- Recursive use of conditional expressions for building
computable functions.

- Representation of LISP programs as LISP data.
- LISP eval function as formal def. & interpreter

- Garbage collection

LISP Diaspora

e MacLISP, FranzLISP, ... -- incompatible
e Scheme — relatively compact dialect

- developed at MIT by Gerry Sussman & Guy Steele
e Common LISP

- Steele wrote first language description

- # of pages in index of CL report exceeds total pages in Scheme
report.

e Programs in text are sort-of LISP
* Racket grew out of PLT Scheme, aimed at education.

- Includes dialects, macros, etc.

LISP/Scheme Data Rep

e Data: <sexp> :: = <atom> | (<sexp> . <sexp>)

¢ atom: 3 |atm| 3

*(3.4) L~
J T~

atm/| 3 atm| 4

e Lists are abbreviations:

- (456 =(4.(G. (6. NIL))

LISP/Scheme List Ops

* cons, car, cdr:
-car(@a.b)=a, cdr@.b)=b
- (cons134)=(0234)
- (car‘G45) =3
- (cdr‘G4s) =045
- (cond ((n 0) 0) (> n o) 1 (true -1)
- (ifGno)on

o All ops are prefix

Defining functions

e (lambda () (* xx)) anonymous function
o (define z 22) naming exp
* (define square (lambda) * xx))) or
¢ (define (square x) (* x %))

Recursive Functions

¢ (define (append I 12)
Gf (null? 1n)
12
(cons (car Ir) (append (cdr 11) 12)))

)
* (append ‘123) ‘(4 56)

More functions

¢ Predefined list functions:
- (map fabcd) = ((fa) (fb) (fo) (fd)

- (member1‘G210) = (10)

e Local variables:

- (define (roots ab c)
(et ((disc - *bb) * 4a0))
(f (>= disc o) (list (/ (+ - o b) (sqrt disc)) (* 2 a))
(/ - - o b) (sqrt disc)) (* 2 2)))
‘(o 0)

Dynamically Typed

* Types associated w/ values instead of variables.
e Values have tag w/type

e (* ab) -- actual operation depends on whether
both ints, both doubles, or one something else

* Requires run-time check for type safety

Evaluation

* Very successful in Al & elsewhere
* Good for experimental programming
* Blur boundaries between data and program

e Simple abstract machine:
- Atoms and cons cells - simple representation

- expression, continuation, association list
(environment), and heap.

* See more modern functional languages soon

