
Lecture 3: Halting Problem
& LISP

CSC 131!
Fall, 2014!

!

Kim Bruce

Decidable Problems

• A yes/no question about all values x is decidable
iff there is an algorithm A that given any input
x, always halts after a finite amount of time and
gives the correct answer.!

• Has to eventually stop for all inputs x!

• Has to always give the right answer

Undecidable Problems

• Can we come up with a general program so that
for any program P and any input x, it will tell us
whether on not P halts on x?!

• Called the Halting Problem!

• Proved undecidable by Turing (no algorithm to decide)!

• Holds for any sufficiently complex language!

• Clearly solvable if language has no control constructs (e.g.,
loops, goto, recursion, etc.)

Solving Halting?

• Suppose H is a function that solves the halting
problem (in your favorite PL):!

- H takes two string arguments P and x, and H(P,x)
returns true iff P is a legal program and when P is run
with input x, then P(x) halts. !

- Returns false otherwise (P not halt, P not legal, etc.)!

- Note H must stop in a finite amount of time with the
correct answer.!

- Show by contradiction that there can’t be such an H.

Diagonalizing

• Given H(P,x), define D(P) to be the following
program:!

- Run H(P,P). It is guaranteed to stop with an answer.!

- If it returns true, loop forever, otherwise halt.!

• Thus, if P(P) halts, then D(P) runs forever!

• If P(P) doesn’t halt then D(P) stops!

• Note we aren’t executing P(P), just asking H(P,P).

Diagonalizing

• Consider D(D):!

- Run H(D,D). It is guaranteed to stop with an answer.!

- If it returns true, loop forever, otherwise halt.!

• Thus, if D(D) halts, then D(D) runs forever!

• If D(D) doesn’t halt then D(D) stops!

• Contradiction!!!#

- Hence there cannot be such an H.!

- Halting problem is undecidable.

Everything Interesting is
Undecidable

• Examples:!

- Will program eventually divide by 0?!

- Will program eventually dereference a null pointer?!

- Will program touch a particular piece of memory?!

- Will program ever print out 0?

Proving Problems
Undecidable

• Reduction Proofs:!

- Assume there is an algorithm A’ to solve new
problem.!

- Show that can use A’ to solve halting problem.!

- Contradiction shows A’ can’t exist.

Example
• Show no algorithm to determine if program Q

halts for any input (at least one).!

- Suppose A’(Q) always halts and returns yes iff Q halts
for some input.!

- Build algorithm to solve halting problem!

• Given input P, w for halting, build new program Pw that
ignores its input and then simulates P on input w.!

• I.e., replace read statement by assigning value w to vble.!

• Then A’(Pw) returns yes iff P halts on w!

• because all runs of Pw are the same!! So if any accepted, so are all.!

• Solves halting problem: contradiction!!! 
Hence there cannot be such an A’

LISP and Scheme
(Racket)

Language Design

• For each language you learn, consider:!
- Motivating applications!

- Abstract machine!

- Theoretical foundations

LISP & Scheme

• Developed in late 50’s by John McCarthy!
- McCarthy won Turing award in 1971!

- See McCarthy “History of Lisp” on web.!

• Support for AI programming!
- Symbolic differentiation, language processing!

- Emacs written in LISP!

- Almost cult-like fervor, even though most AI
programming now in other languages.!

LISP Features
- Compute w/symbolic expressions instead of numbers!

- Representation of expressions as (nested) lists!

- Small set of selector and constructor ops expressed as
functions. Composition to compose functions.!

- Use of conditional expressions for branching!

- Recursive use of conditional expressions for building
computable functions.!

- Representation of LISP programs as LISP data.!

- LISP eval function as formal def. & interpreter!

- Garbage collection

LISP Diaspora

• MacLISP, FranzLISP, ... -- incompatible!
• Scheme -- relatively compact dialect!
- developed at MIT by Gerry Sussman & Guy Steele!

• Common LISP!
- Steele wrote first language description!
- # of pages in index of CL report exceeds total pages in Scheme

report.!

• Programs in text are sort-of LISP#
• Racket grew out of PLT Scheme, aimed at education.!
- Includes dialects, macros, etc.

LISP/Scheme Data Rep

• Data: <sexp> :: = <atom> | (<sexp> . <sexp>)!

• atom: 3!

• (3 . 4) 
 
 

• Lists are abbreviations:!
- (4 5 6) = (4 . (5 . (6 . NIL)))

atm 3

atm 3 atm 4

LISP/Scheme List Ops

• cons, car, cdr:!
- car (a . b) = a, cdr (a . b) = b!

- (cons 1 ‘(2 3 4)) ⇒ (1 2 3 4)!

- (car ‘(3 4 5)) ⇒ 3!

- (cdr ‘(3 4 5)) ⇒ (4 5)!

- (cond ((= n 0) 0) ((> n 0) 1) (true -1))!

- (if (= n 0) 0 1)!

• All ops are prefix

Defining functions

• (lambda (x) (* x x)) anonymous function#

• (define z 22) naming exp!

• (define square (lambda (x) (* x x))) or!

• (define (square x) (* x x))

Recursive Functions

• (define (append l1 l2)  
 (if (null? l1)  
 l2 
 (cons (car l1) (append (cdr l1) l2))) 
)!

• (append ‘(1 2 3) ‘(4 5 6))

More functions
• Predefined list functions:!
- (map f ‘(a b c d)) ⇒ ((f a) (f b) (f c) (f d))!

- (member 1 ‘(3 2 1 0)) ⇒ (1 0)!

• Local variables:!
- (define (roots a b c) 
! (let ((disc (- (* b b) (* 4 a c))))  
! (if (>= disc 0) (list (/ (+ (- 0 b) (sqrt disc)) (* 2 a)) 
! ! (/ (- (- 0 b) (sqrt disc)) (* 2 a))) 
 ! ‘(0 0)  
) 
 !)  
)

Dynamically Typed

• Types associated w/ values instead of variables.!

• Values have tag w/type!

• (* a b) -- actual operation depends on whether
both ints, both doubles, or one something else!

• Requires run-time check for type safety

Evaluation
• Very successful in AI & elsewhere!

• Good for experimental programming!

• Blur boundaries between data and program!

• Simple abstract machine: !
- Atoms and cons cells -- simple representation!

- expression, continuation, association list
(environment), and heap. !

• See more modern functional languages soon

