Lambda Calculus Cheat Sheet - continued

CSC 131
September 12, 2006

1 Booleans

$$
\begin{aligned}
\text { true } & =\lambda u \cdot \lambda v \cdot u . \\
\text { false } & =\lambda u \cdot \lambda v \cdot v . \\
\text { cond } & =\lambda u \cdot \lambda v \cdot \lambda w \cdot u v w .
\end{aligned}
$$

2 Data structures

```
Pair = \lambdam. \lambdan. \lambdab. cond bmn.
    fst = \lambdap.p true
    snd = \lambdap.pfalse
```


3 Natural numbers and arithmetic

$0=\lambda s . \lambda z . z$.
$1=\lambda s . \lambda z . s z$.
$2=\lambda s . \lambda z . s(s z)$.
$=\quad \lambda s . \lambda z . s(s(s(\ldots(s z) \ldots)))$,
where the right hand side of the last line includes n occurrences of s.
Notice that $\mathrm{n} f x=f^{n}(x)$
The successor function adds an extra application of successor to a number. Succ $=\lambda n . \lambda s . \lambda z . s(n s z)$.
Thus Succ $n=n+1$. With successor, it is easy to define addition, multiplication, and a test for zero:

$$
\begin{aligned}
\text { Plus } & =\lambda n \cdot \lambda m \cdot \lambda s \cdot \lambda z \cdot m s(n s z) . \\
\text { Mult } & =\lambda n \cdot \lambda m \cdot m \text { (Plus } n) 0 . \\
\text { isZero } & =\lambda n \cdot n(\lambda x \cdot \text { false) true. } \\
\text { s. } & =\lambda s \cdot \lambda z \cdot \mathrm{~m} s(\mathrm{n} s z) \\
\text { Plus } \mathrm{n} \mathrm{~m} & =\lambda s \cdot \lambda z \cdot s^{n}\left(s^{m}(z)\right) \\
& =\lambda s \cdot \lambda z \cdot s^{n+m}(z) \\
& =\mathrm{n}+\mathrm{m} .
\end{aligned}
$$

Thus
while

```
Mult n m = m (Plus n) 0
    = (Plus n) m}
    = n*m.
```

Also, isZero $0=$ true because the constant function λx. false is never applied, while isZero $\mathrm{n}=$ false when $n>0$ because the constant function will be applied at least once.

Finding the predecessor of a number is tricky. Start by providing a new encoding of numbers as pairs:

$$
\begin{aligned}
& \text { PZero }=\langle 0,0\rangle=\text { Pair } 00 \\
& \text { PSucc }=\lambda n \text {. Pair }(\operatorname{snd} n)(\operatorname{Succ}(\operatorname{snd} n))
\end{aligned}
$$

Therefore n is encoded as Pair ($\mathrm{n}-1$) n .
Now define the predecessor function:

$$
\text { Pred }=\lambda n \text {. fst (} n \text { PSucc PZero). }
$$

The definition of subtraction is easily obtained.

4 Recursion

Define

$$
\mathrm{Y}=\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

Y is called the fixed-point combinator because for all g, we get $\mathrm{Y} g=g(\mathrm{Y} g)$.
Thus $\mathrm{Y} g$ is a fixed point of g for any function g.
Recall the definition of factorial:
fact $=\lambda n$. cond (isZero $n) 1($ Mult $n($ fact $(\operatorname{Pred} n)))$
Define F by
$\mathrm{F}=\lambda f . \lambda n$. cond (isZero $n) 1($ Mult $n(f(\operatorname{Pred} n)))$
then $\mathrm{F}(f a c t)=$ fact. Because fact is a fixed point of F , define
fact $=Y$ F.
Here are some values of fact.
fact $0=(\mathrm{F}(\mathrm{fact})) 0$ because fact is a fixed point of F
$=$ cond (isZero 0) 1 (Mult $0($ fact (Pred 0))) expanding F
$=1$ by the definition of cond
fact $1=(\mathrm{F}(\mathrm{fact})) 1$ because fact is a fixed point of F
$=$ cond (isZero 1) 1 (Mult 1 (fact (Pred 1))) expanding F
$=$ Mult 1 (fact (Pred 1)) by the definition of cond
$=$ fact $0 \quad$ by the definition of Mult and Pred
$=1 \quad$ by the above calculation
fact $2=(\mathrm{F}(\mathrm{fact})) 2$ because fact is a fixed point of F $=$ cond (isZero 2) 1 (Mult 2 (fact (Pred 2))) expanding F
$=$ Mult 2 (fact (Pred 2)) by the definition of cond
$=$ Mult 2 (fact 1) by the definition of Pred
$=$ Mult 21 by the above calculation
$=2$ by the definition of Mult

