Lecture 9: Regular
Expressions in Haskell/
Context-Free Grammars

CSCI 101
Spring, 2019

Kim Bruce

(General simulation of DFSM

e Provide transition function as set of triples

¢ Build machine from start state, triples, and set
of final states

o myFSM = FSM start triples final

e To apply write

* gAccept myFSM input

* Returns True iff it accepts it.

Big Idea in Implementation

* Suppose you want to see if configuration
(s,w) —* (t,e), where t is a final state.

* If w=aw’ and (s,a) = u, then just need to check
if (u,w) H* (t,8)

* I.e., making a move equivalent to lopping oft
first input and running on new DFSM w/ start
state u.

Modeling Regular

Expressions

e Create functions that allow construction of
machines that model regular expressions: (alb)*

* Eg star(union(once ‘a’) (once ‘b)) will
return a value amstar s.t. match amstar inp will
return true iff inp is in set generated by (alb)*




Modeling Regular Modeling Regular
Expressions Expressions

* Meaning of regular expression will be a DFSM
that is equivalent to regular expression.
e The meaning of a regular expression is a tuple
e In class: with number of states, the starting state (a set),
« Regular expression = NDFSM the, transition function, and the set of

accepting states
e NDFSM = DFSM

* Keeping track of number of states tell us set of states:
* We will do both at once.

o If 6 states, then they are {0,1,2,3,4,5)

* Meaning of regular expression will be DFSM whose
states are sets of states from NDFSM.

Using RegExp Building Regular Expressions

e Look at

* empty (representing empty set)

hello = Regex 6 (Set.singleton o) f (Set.singleton 5) * epsilon (representing empty string {e)

where
f'H' 0 = Set.fromList {o,1} e dot (matches anything)
f'e' 1 = Set.fromList {0,2]
f'' 2 = Set.fromList {0,3} * build machines for singletons and union

f'l' 3 = Set.fromList 0,4}

f'o' 4 = Set.fromList 0,5}

f _ 5 = Set.singleton § - stay in 5 forever as saw "Hello"

f _ _=Set.singleton o -- if get something unexpected go to o




Using DFSM model

e Build up regular expression equivalent in prefix
form:
e (alb)* represented by
o aorbstar = star (union (once ‘a) (once ‘b))
* where once is a singleton, so once ‘a’ represents {‘a’}
* Once build use match to apply to string

¢ match aorbstar “ababa”

Context-Free Grammars

CFGs are Useful!

* Use to describe programming and natural
languages

¢ ForStatement:
for ( ForInitop: ; Expressionep ; ForIncrop: ) Statement

e English:
e Sentence ::= NP VP
e NP ::= Art Nominal | Nominal | ProperNoun | ...
e Nominal ::= N|Adj N

e N := cat | dog| girl | boy | ...

Definitions

* A context-free grammar is a quadruple,
G=(, 2 R,S) in which

* Vis a finite set of variables, containing terminals and
nonterminals.

e > CVis the set of terminals

o Ris a finite set of productions of the form U—a., where

U is a single nonterminal and a is a (possibly empty)
string of terminals and nonterminals.
Le., OK to write U — ¢

e Sisan element of V called the start symbol.




One-Step

¢ Define w =G w’ so that Vx,y € V",

o w=cw iff
w=aAB, w = ayp and there isarule A — yin R

e =" is the reflexive, transitive closure
e means derivable in o or more steps.

* L(G) ={weEZ*IS=c*w}

e L is a context-free language if there is a cfg G
s.t. L=L(G)

Examples

* Note: Often only state rules, rather than all 4 pieces
e S — w|w abbreviates two rules: S = w, S = w’

e Language of balanced parens:
e S—=SSIO) e

e Show derivation of 0(0)

e L={on 17| n 2 o} is a context-free language

eL={wwRlwEXZ}iscfl

CFLs Richer Than Regular

* Regular languages < context-free languages

* Because regular grammars are context-free & above
examples not regular

o Power comes because of recursive embedding:

o A=*wAw forw,w %€

Closure

e CFDIs closed under

e Concatenation
e Kleene *

e Reversal

e Union

e Substitution

* What about complement, intersection,
difference, ...?




