
Lecture 9: Regular
Expressions in Haskell/
Context-Free Grammars

CSCI 101
Spring, 2019

Kim Bruce

General simulation of DFSM

• Provide transition function as set of triples

• Build machine from start state, triples, and set
of final states

• myFSM = FSM start triples final

• To apply write

• gAccept myFSM input

• Returns True iff it accepts it.

Big Idea in Implementation

• Suppose you want to see if configuration  
(s,w) ⊢* (t,ε), where t is a final state.

• If w = aw’ and (s,a) = u, then just need to check
if (u,w’) ⊢* (t,ε)

• I.e., making a move equivalent to lopping off
first input and running on new DFSM w/ start
state u.

Modeling Regular
Expressions

• Create functions that allow construction of
machines that model regular expressions: (a|b)*

• E.g. star(union(once ‘a’) (once ‘b)) will
return a value amstar s.t. match amstar inp will
return true iff inp is in set generated by (a|b)*

Modeling Regular
Expressions

• Meaning of regular expression will be a DFSM
that is equivalent to regular expression.

• In class:

• Regular expression ⇒ NDFSM

• NDFSM ⇒ DFSM

• We will do both at once.

• Meaning of regular expression will be DFSM whose
states are sets of states from NDFSM.

Modeling Regular
Expressions

• The meaning of a regular expression is a tuple
with number of states, the starting state (a set),
the, transition function, and the set of
accepting states

• Keeping track of number of states tell us set of states:

• If 6 states, then they are {0,1,2,3,4,5}

Using RegExp

hello = Regex 6 (Set.singleton 0) f (Set.singleton 5)
 where
 f 'H' 0 = Set.fromList [0,1]
 f 'e' 1 = Set.fromList [0,2]
 f 'l' 2 = Set.fromList [0,3]
 f 'l' 3 = Set.fromList [0,4]
 f 'o' 4 = Set.fromList [0,5]
 f _ 5 = Set.singleton 5 -- stay in 5 forever as saw "Hello"
 f _ _ = Set.singleton 0 -- if get something unexpected go to 0

Building Regular Expressions

• Look at

• empty (representing empty set)

• epsilon (representing empty string {ε})

• dot (matches anything)

• build machines for singletons and union

Using DFSM model

• Build up regular expression equivalent in prefix
form:

• (a|b)* represented by

• aorbstar = star (union (once ‘a’) (once ‘b’))

• where once is a singleton, so once ‘a’ represents {‘a’}

• Once build use match to apply to string

• match aorbstar “ababa”

Context-Free Grammars

CFGs are Useful!

• Use to describe programming and natural
languages

• ForStatement:  
for (ForInitopt ; Expressionopt ; ForIncropt) Statement

• English:

• Sentence ::= NP VP

• NP ::= Art Nominal | Nominal | ProperNoun | ...

• Nominal ::= N | Adj N

• N := cat | dog | girl | boy | ...

Definitions
• A context-free grammar is a quadruple,  

G = (V, Σ, R, S) in which

• V is a finite set of variables, containing terminals and
nonterminals.

• Σ ⊆ V is the set of terminals

• R is a finite set of productions of the form U→α, where
U is a single nonterminal and α is a (possibly empty)
string of terminals and nonterminals. 
I.e., OK to write U → ε

• S is an element of V called the start symbol.

One-Step

• Define w ⇒G w’ so that ∀x, y ∈ V*,

• w ⇒G w’ iff  
 w = αAβ, w’ = αγβ and there is a rule A → γ in R

• ⇒G* is the reflexive, transitive closure

• means derivable in 0 or more steps.

• L(G) = { w ∈ Σ* | S ⇒G* w }

• L is a context-free language if there is a cfg G
s.t. L = L(G)

Examples
• Note: Often only state rules, rather than all 4 pieces

• S → w | w’ abbreviates two rules: S → w, S → w’

• Language of balanced parens:

• S → SS | (S) | ε

• Show derivation of ()(())

• L = {0n 1n | n ≥ 0} is a context-free language

• L = {w wR | w ∈ Σ*} is cfl

CFLs Richer Than Regular

• Regular languages ⊊ context-free languages

• Because regular grammars are context-free & above
examples not regular

• Power comes because of recursive embedding:

• A ⇒* wAw’ for w,w’ ≠ ε

Closure

• CFL’s closed under

• Concatenation

• Kleene *

• Reversal

• Union

• Substitution

• What about complement, intersection,
difference, ...?

