Lecture 8: Regular
Expressions in Haskell

CSCI 101
Spring, 2019

Kim Bruce

New Homework

* Haskell programming

Recursive Datatype Examples

¢ data Tree a = Niltree |
Maketree (a, Tree a, Tree a)

Binary Search Using Trees

insert new Niltree = Maketree(new,Niltree,Niltree)
insert new (Maketree (root,l,r)) =
if new < root
then Maketree (root, (insert new 1),r)
else Maketree (root,l,(insert new r))

buildtree [] = Niltree
buildtree (fst : rest) =
insert fst (buildtree rest)

Binary Search Tree

find elt Niltree = False
find elt (Maketree (root,left,right)) =
if elt == root
then True
else if elt < root then find elt left
else find elt right -- elt =z root

bsearch elt list = find elt (buildtree list)

Haskell is Lazy!

CODE WRITTEN IN HASKELL
15 GUARANTEED TO HAVE
NO SIDE EFFECTS.

... BECAUSE NO ONE
WILL EVER RUN IT?

Al

Lazy vs. Eager Evaluation

* Eager: Evaluate operand, substitute operand
value in for formal parameter, and evaluate.

e Lazy: Substitute operand for formal parameter
and evaluate body, evaluating operand only
when needed.

- Each actual parameter evaluated either not at all or only
once! (Essentially cache answer once computed)

- Like left-most outermost, but more efficient

Lazy evaluation

* Compute f(i/0,17) where f(x,y) =y

* Computing head(qsort{5000,4999..1D) is faster
than gsort{5000,4999..1}
e Compare time of computations of:
e fib32
e dble (fib 32) where dble x = x + x

Lazy Lists

fib 0 =1

fib 1 = 1 complexity O(fib n) - O(27)

fib n = fib (n-1) + fib (n-2)

fibList = £ 1 1 complexity O(n)
where £f a b =a : £ b (atb)

fastFib n = fibList!!n

fibs = 1:1:[a+b | (a,b) <- zip fibs (tail fibs)]

primes = sieve [2..]
where
sieve (p:x) = p :
sieve [n | n <- X, n "mod> p > 0]

Call-by-need

* Efficient implementation of call-by-name
(Algol 60)

 Most languages use call be value!

¢ If purely functional language then may evaluate
expression at most once, because can never
change.

Input/Output in Haskell

Instance of Monads in Haskell,
which we will not discuss.

Printing is easy

* main = putStrLn “hello world!”

* program that prints to screen — without quotes

* putStrLn :: String -> I0()

e returns I/O action with no value

* Main program will always be an 1O action

Why an IO “action”

® JO is a “side-effect” and Haskell doesn’t allow
side effects.

o Side effect is a change that causes expressions to return
different values.

e Ifx =10, then x + x causes no side effects — every time
you evaluate it, you get the same answer.

e ++x + (++x) has side effects — every time it is evaluated x
increases by 2.

e Input and output have side effects

e change screen, or use up input

I/O in Haskell

e The I/O language is external to Haskell, but
can call pure Haskell programs

¢ getLine :: IO String
* IO action that gets a string

* Need a way to access string value

¢ “do” construct allows us to glue together IO
actions.

More 1/0O

e Recall:

e putStrLn :: String -> IO()
¢ getLine :: IO String
e Can't write

e echo = putStrLn (getLine)

,
° types can’t compose.

Do to Rescue!

e do clause can extract value from an IO action
to be used in a later Haskell function or IO
action

main = do
putStrLn “Iype your name”

name <- getLine
putStrLine (“Hi, “++ name)

* name is String that can be used in next line

* but do must always result in IO action

More 10

ask :: String -> String -> 100
ask prompt ansPrefix =
do putStr (prompt++" ")
response <- getLine
putStrLn (ansPrefix ++

"" ++ response)

getlnteger :: 1O Integer
getlnteger = do putStr "Enter an integer: "
line <- getLine
return (read line)
-- converts string to Integer then to 10 Integer

Using IO in Haskell

ifIO:: IO Bool->I0a->I0a->10a
ifIO b tv fv =do { bv <- b;
if bv then tv else fv}

¢ Can build language at IO monad level:
whileIO :: IO Bool -> I0() -> IO()
whileIO b m =ifIO b
(do {m; whileIO b m})
(return())

Sets in Haskell

e Differ from lists as order not important

* Intended to be imported qualified:

* import Data.Set(Set)
import qualified Data.Set as Set

* Allows you to just use Set rather than Data.Set
¢ avoids clashes with Prelude functions

e operations: Set.singleton, Set.empty, Set.union,
Set.member

DFSM in Haskell

* Write function accepts that takes a
configuration (state,input) and computes the
state after all input read.

Simulating DFSM General simulation

e Provide transition function as set of triples
* Code in Haskell:
¢ Build machine from start state, triples, and set
e Simple emulation for fixed machine of final states

¢ See function decide in SimpleExampleFSM.hs . myFSM — FSM start triples final

* General emulation for arbitrary NDFSM
e To apply write

e See function gAccept in same file

e Uses record, which automatically generates functions to extract * gAccept myFSM input
each field. E.g, startingState(fsm), transitionFunction(fsm), ...

* Returns True iff it accepts it.

