
Lecture 8: Regular
Expressions in Haskell

CSCI 101
Spring, 2019

Kim Bruce

New Homework

• Haskell programming

Recursive Datatype Examples

• data Tree a = Niltree |  
 Maketree (a, Tree a, Tree a)

Binary Search Using Trees

insert new Niltree = Maketree(new,Niltree,Niltree)
insert new (Maketree (root,l,r)) =
if new < root
 then Maketree (root,(insert new l),r)
 else Maketree (root,l,(insert new r))

buildtree [] = Niltree
buildtree (fst : rest) =
 insert fst (buildtree rest)

Binary Search Tree

find elt Niltree = False
find elt (Maketree (root,left,right)) =
if elt == root

 then True
 else if elt < root then find elt left
 else find elt right -- elt ≥ root

bsearch elt list = find elt (buildtree list)

Haskell is Lazy!

Lazy vs. Eager Evaluation

• Eager: Evaluate operand, substitute operand
value in for formal parameter, and evaluate.

• Lazy: Substitute operand for formal parameter
and evaluate body, evaluating operand only
when needed.

- Each actual parameter evaluated either not at all or only
once! (Essentially cache answer once computed)

- Like left-most outermost, but more efficient

Lazy evaluation

• Compute f(1/0,17) where f(x,y) = y

• Computing head(qsort[5000,4999..1]) is faster
than qsort[5000,4999..1]

• Compare time of computations of:

• fib 32

• dble (fib 32) where dble x = x + x

Lazy Lists
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fibList = f 1 1
where f a b = a : f b (a+b)

fastFib n = fibList!!n

fibs = 1:1:[a+b | (a,b) <- zip fibs (tail fibs)]

primes = sieve [2..]
 where
 sieve (p:x) = p :
 sieve [n | n <- x, n `mod` p > 0]

complexity O(fib n) ~ O(2n)

complexity O(n)

Call-by-need

• Efficient implementation of call-by-name
(Algol 60)

• Most languages use call be value!

• If purely functional language then may evaluate
expression at most once, because can never
change.

Input/Output in Haskell

Instance of Monads in Haskell,
which we will not discuss.

Printing is easy

• main = putStrLn “hello world!”

• program that prints to screen — without quotes

• putStrLn :: String -> IO()

• returns I/O action with no value

• Main program will always be an IO action

Why an IO “action”
• IO is a “side-effect” and Haskell doesn’t allow

side effects.

• Side effect is a change that causes expressions to return
different values.

• If x = 10, then x + x causes no side effects — every time
you evaluate it, you get the same answer.

• ++x + (++x) has side effects — every time it is evaluated x
increases by 2.

• Input and output have side effects

• change screen, or use up input

I/O in Haskell

• The I/O language is external to Haskell, but
can call pure Haskell programs

• getLine :: IO String

• IO action that gets a string

• Need a way to access string value

• “do” construct allows us to glue together IO
actions.

More I/O

• Recall:

• putStrLn :: String -> IO()

• getLine :: IO String

• Can’t write

• echo = putStrLn (getLine)

• types can’t compose.

Do to Rescue!

• do clause can extract value from an IO action
to be used in a later Haskell function or IO
action

main = do
 putStrLn “Type your name”
 name <- getLine
 putStrLine (“Hi, “++ name)

• name is String that can be used in next line

• but do must always result in IO action

More IO
ask :: String -> String -> IO()
ask prompt ansPrefix =
 do putStr (prompt++" ")
 response <- getLine
 putStrLn (ansPrefix ++ " " ++ response)

getInteger :: IO Integer
getInteger = do putStr "Enter an integer: "
 line <- getLine
 return (read line)
 -- converts string to Integer then to IO Integer

Using IO in Haskell

• Can build language at IO monad level:

ifIO :: IO Bool -> IO a -> IO a -> IO a
ifIO b tv fv = do { bv <- b;
 if bv then tv else fv}

whileIO :: IO Bool -> IO() -> IO()
whileIO b m = ifIO b
 (do {m; whileIO b m})
 (return())

Sets in Haskell

• Differ from lists as order not important

• Intended to be imported qualified:

• import Data.Set(Set) 
import qualified Data.Set as Set

• Allows you to just use Set rather than Data.Set

• avoids clashes with Prelude functions

• operations: Set.singleton, Set.empty, Set.union,
Set.member

DFSM in Haskell

• Write function accepts that takes a
configuration (state,input) and computes the
state after all input read.

Simulating DFSM

• Code in Haskell:

• Simple emulation for fixed machine

• See function decide in SimpleExampleFSM.hs

• General emulation for arbitrary NDFSM

• See function gAccept in same file

• Uses record, which automatically generates functions to extract
each field. E.g., startingState(fsm), transitionFunction(fsm), …

General simulation

• Provide transition function as set of triples

• Build machine from start state, triples, and set
of final states

• myFSM = FSM start triples final

• To apply write

• gAccept myFSM input

• Returns True iff it accepts it.

