
Lecture 7: More Haskell
CSCI 101

Spring, 2019

Kim Bruce

Last Time:

• Closure properties of regular languages

• Including pumping lemma

• Haskell programming

Pattern Matching

• Decompose lists:
- [1,2,3] = 1:(2:(3:[]))

• Define functions by cases using pattern
matching:

prod [] = 1  
prod (fst:rest) = fst * (prod rest)

More Pattern Matching

• (x,y) = (5 `div` 2, 5 `mod` 2)

• hd:tl = [1,2,3]

• hd:_ = [4,5,6]
- “_” is wildcard.

Static Typing

• Strongly typed via type inference
- head:: [a] → a 

 tail:: [a] → [a]

- last [x] = x 
last (hd:tail) = last tail

• System deduces most general type, [a] -> a

Local Declarations
roots (a,b,c) =
 let -- indenting is significant
 disc = sqrt(b*b-4.0*a*c)
 in
 ((-b + disc)/(2.0*a),(-b - disc)/(2.0*a))

*Main> roots(1,5,6)
(-2.0,-3.0)
or
roots' (a,b,c) = ((-b + disc)/(2.0*a),  
 (-b - disc)/(2.0*a))
 where disc = sqrt(b*b-4.0*a*c)

Anonymous functions

• dble x = x + x

• abbreviates

• dble = \x -> x + x

Defining New Types

• Type abbreviations
- type Point = (Integer, Integer)

- type Pair a = (a,a)

• data definitions
- create new type with constructors as tags.

- generative

• data Color = Red | Green | Blue
See more complex examples later

Type Classes Intro

• Specify an interface:
- class Eq a where  

 (==) :: a -> a -> Bool -- specify ops 
 (/=) :: a -> a -> Bool  
 x == y = not (x /= y) -- optional implementations 
 x /= y = not (x == y)

- data TrafficLight = Red | Yellow | Green  
instance Eq TrafficLight where  
 Red == Red = True  
 Green == Green = True  
 Yellow == Yellow = True  
 _ == _ = False

Common Type Classes

• Eq, Ord, Enum, Bounded, Show, Read
- See http://www.haskell.org/tutorial/stdclasses.html

• data defs pick up default if add to class:
- data ... deriving (Show, Eq)

• Can redefine:
- instance Show TrafficLight where  

 show Red = "Red light"  
 show Yellow = "Yellow light"  
 show Green = "Green light"

More Type Classes
• class (Eq a) => Num a where ...
- instance of Num a must be Eq a

• Polymorphic function types can be prefixed w/
type classes
- test x y = x < y has type (Ord a) => a -> a -> Bool

- Can be used w/ x, y of any Ord type.

• More later ...
- Error messages often refer to actual parameter needing to be

instance of a class -- to have an operation.

Higher-Order Functions
• Functions that take function as parameter
- Ex: map:: (a → b) → ([a] → [b])

• Build new control structures
- listify oper identity [] = identity  

listify oper identity (fst:rest) =  
 oper fst (listify oper identity rest) 

- sum' = listify (+) 0 
mult' = listify (*) 1 
and' = listify (&&) True 
or' = listify (||) False

Exercise

• Is listify left or right associative?

- What is listify (-) 0 [3,2,1]? 2 or -6 or 0 or ???

• How can we change definition to associate the
other way?

See built-in foldl and foldr

Quicksort
partition (pivot, []) = ([],[])
partition (pivot, first : others) =
 let
 (smalls, bigs) = partition(pivot, others)
 in
 if first < pivot
 then (first:smalls, bigs)
 else (smalls, first:bigs)

Type is:

partition :: (Ord a) => (a, [a]) -> ([a], [a])

Quicksort
qsort [] = []
qsort [singleton] = [singleton]
qsort (first:rest) =
 let

 (smalls, bigs) = partition(first,rest)
in
 qsort(smalls) ++ [first] ++ qsort(bigs)

Type is:

qsort :: (Ord t) => [t] -> [t]

Quicksort - parametrically
partition (pivot, []) lThan = ([],[])
partition (pivot, first : others) lThan =
 let
 (smalls, bigs) = partition(pivot, others) lThan
 in
 if (lThan first pivot)
 then (first:smalls, bigs)
 else (smalls, first:bigs)

partition ::
 (t, [a]) -> (a -> t -> Bool) -> ([a], [a])

*Main> partition(6,[8,4,6,3])(>)

Quicksort
qsort [] lt = []
qsort [singleton] lt = [singleton]
qsort (first:rest) lt =
 let
 (smalls, bigs) = partition (first,rest) lt
 in
 qsort smalls lt ++ [first]
 ++ qsort bigs lt

qsort :: [a] -> (a -> a -> Bool) -> [a]

*Main> qsort [33,66,32,87,999,2](>)
[999,87,66,33,32,2]

Recursive Datatype Examples

• data IntTree = Leaf Integer |  
 Interior (IntTree,IntTree)  
 deriving Show
- Example values: Leaf 3, Interior(Leaf 4,Leaf -5), ...

• data Tree a = Niltree |  
 Maketree (a, Tree a, Tree a)

