Lecture 5: Pumping Lemma

CSCI 8i
Spring, 2015
Kim Bruce

Last Time:

- Regular languages are those
- accepted by DFSM
- accepted by NDFSM
- described by regular expressions
- generated by regular grammars
- How do we show languages not regular?
- Show violate some property of regular languages

Pumping Lemma:

If L is regular, there is a number p (the pumping length) where, if $w \in L$ of length at least p, then there are $x, y, \& z$ with $w=x y z$, such that:
I. for each $\mathrm{i} \geq 0, \mathrm{x} \mathrm{y}^{\mathrm{i}} \mathrm{z} \in \mathrm{L}$;
2. $\mathrm{ly} \mid>\mathrm{O}$; and
3. $|x y| \leq p$.

Use to show languages not regular!

Using Pumping

- Proof by contradiction. Assume regular.
- Therefore exists p from P.L.
- Let $w=o$ Prip $\in L$
- By P.L. can write $w=x y z$ s.t. $|x y|=k \leq p$ s.t. $x y^{i z} \in L$ for all i
- But $|x y| \leq p \Rightarrow x, y$ consist of all o's.

- Pick $\mathrm{n}=2$, then $\mathrm{xy}^{2 \mathrm{z}}=\mathrm{op}+\mathrm{i} \mathrm{I} p \notin \mathrm{~L}$. Contradiction so not regular!

Pumping Lemma Game

- To show L not regular
- Opponent picks p
- I pick w s.t. $|\mathrm{w}| \geq \mathrm{p}$
- They pick decomposition $\mathrm{w}=\mathrm{xyz}$ s.t. $|\mathrm{xyy}| \leq \mathrm{p}, \mathrm{y} \neq \varepsilon$
- I show there is some is.t. $\mathrm{x} \mathrm{y}^{\mathrm{i}} \mathrm{z} \notin \mathrm{L}$
- If I succeed then I have shown L not regular!

Decision Problems w/FSM

- Let $\mathrm{L}=L(\mathrm{M})$ be a regular language, where M is DFSM, \& $\mathrm{w} \in \Sigma^{*}$. It is decidable whether
- $w \in L$
- $L(M)=\varnothing$
- Algo i: Mark all reachable states. See if any are accepting.
- Algo 2: Create unique minimal and see if any are accepting
- $L(\mathrm{M})=\Sigma^{*}$

Regular or Not?

- $L=\left\{a^{i b j}: 0 \leq i<j<2000\right\}$.
- $L=\left\{a^{i} b^{j}: i, j \geq 0\right.$ and $\left.i<j\right\}$.
- $L=\left\{a^{i b j}: i, j \geq 0\right.$ and $\left.i \geq j\right\}$.
- $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}:|\mathrm{w}|\right.$ is a power of 2$\}$

Decision Problems w/FSM

- Let $\mathrm{L}=L(\mathrm{M})$ be a regular language, where M is DFSM, \& w $\in \Sigma^{*}$. It is decidable whether
- $L(\mathrm{M})$ is infinite
- Use pumping lemma!
- Claim: if $L(M)$ infinite then must have w s.t. $|K| \leq|w|<2|K|-1$.
- $L\left(\mathrm{M}_{\mathrm{I}}\right) \subseteq L\left(\mathrm{M}_{2}\right)$
- Difference is empty
- $L\left(\mathrm{M}_{1}\right)=L\left(\mathrm{M}_{2}\right)$
- Use above or compare canonical minimal DFSM's

Programming in Haskell!

According to Larry Wall (designer of PERL):
... a language by geniuses for geniuses though you might agree when we talk about monads

Read Haskell Tutorials

- All on links page from course web page
- I like "Learn you a Haskell for greater good"
- O'Reilly text: "Real World Haskell" free on-line
- Print Haskell cheat sheet
- Use "The Haskell platform", available at
- http://www.haskell.org/

Using GHC

- to enter interactive mode type: ghci
- :load myfile.hs -- :l also works
- after changes type :reload or :r
- Control-d to exit
- :set +t -- prints more type info when interactive
- "it" is result of expression
- Evaluate "it + I" gives one more than previous answer.

Built-in data types

- Unit has only ()
- Bool: True, False with not, \&\&, \||
- Int: $5,-5$, with $+,-,{ }^{*},{ }^{\wedge}=, /=,\langle,>,>=, \ldots$
- div, mod defined as prefix operators (`div` infix)
- Int fixed size (usually 64 bits)
- Integer gives unbounded size
- Float, Double: 3.17, 2.4eI7 w/ +, -, *, /, =, <, >, >=, $<=$, sin, cos, log, exp, sqrt, sin, atan.

Interactive Programming with ghci

- Type expressions and run-time will evaluate
- Define abbreviations with "let"
- let double $\mathrm{n}=\mathrm{n}+\mathrm{n}$
- let seven $=7$
- "let" not necessary at top level in programs loaded from files

More Basic Types

- Char: 'n'

- String $=$ [Char], not really primitive
- "hello"++" there", length Prefix op wout "!
- No substring, but isInfixOf for all lists
- Also 'isPrefixOf, isSuffixOf' import Data.List
- Type classes (later) provide relations between classes.

Lists

- Lists
-
- [] -- empty list
- Must be homogenous
- Functions: length, ++, :, map, rev
- also head, tail, but normally don't use!

Polymorphic Types

- $[1,2,3]:$: [Integer]
- ["abc", "def"]:: [IChar]], ...
- []:: [a]
- map:: $(\mathrm{a} \rightarrow \mathrm{b}) \rightarrow([\mathrm{a}] \rightarrow[\mathrm{b}])$
- Use :t exp to get type of exp

Pattern Matching

- Desugared through case expressions:
- head' :: [a] -> a
head' []$=$ error "No head for empty lists!" head' $(\mathrm{x}: \perp$) x
- equivalent to
- head' xs = case xs of
[]-> error "No head for empty lists!" (x:_) -> x

Pattern Matching

- Decompose lists:
$-[1,2,3]=\mathrm{I}:(2:(3:[]))$
- Define functions by cases using pattern matching:
prod [] = 1
prod (fst:rest) $=$ fst * (prod rest)

Type constructors

- Tuples
- (17 ,"abc", True) : (Integer , [Char] , Bool)
- fst, snd defined only on pairs
- Records exist as well

More Pattern Matching

- $(\mathrm{x}, \mathrm{y})=\left(5^{\text {` }} \mathrm{div}^{`} 2,5^{\text {` mod }} 2\right)$
- $\mathrm{hd}: \mathrm{tl}=[\mathrm{I}, 2,3]$
- hd:- = [4,5,6]
- "_" is wildcard.

