
Lecture 5: Pumping Lemma
CSCI 81

Spring, 2015

Kim Bruce

Last Time:

• Regular languages are those

• accepted by DFSM

• accepted by NDFSM

• described by regular expressions

• generated by regular grammars

• How do we show languages not regular?

• Show violate some property of regular languages

Pumping Lemma:

If L is regular, there is a number p (the pumping
length) where, if w ∈ L of length at least p, then
there are x, y, & z with w = xyz, such that:

1. for each i ≥ 0, x yi z ∈ L;

2. |y| > 0; and

3. |xy| ≤ p.

Use to show languages not regular!

Using Pumping

• Show L = {on1n | n ≥ 0} is not regular

• Proof by contradiction. Assume regular.

• Therefore exists p from P.L.

• Let w = op1p ∈ L

• By P.L. can write w = xyz s.t. |xy| = k ≤ p s.t. xyiz ∈ L for all i

• But |xy| ≤ p ⇒ x, y consist of all 0’s.

• So x = oi, y = 0j, z = op-i-j1p where j > 0.

• Pick n = 2, then xy2z = op+j1p ∉ L. Contradiction so not regular!

Pumping Lemma Game

• To show L not regular

• Opponent picks p

• I pick w s.t. |w| ≥ p

• They pick decomposition w = xyz s.t. |xy| ≤ p, y ≠ ε

• I show there is some i s.t. x yi z ∉ L

• If I succeed then I have shown L not regular!

Regular or Not?

• L = {aibj : 0 ≤i <j <2000}.

• L = {aibj : i, j ≥ 0 and i < j }.

• L = {aibj : i, j ≥ 0 and i ≥ j }.

• L = {w ∈ {a,b}* : |w| is a power of 2}

Decision Problems w/FSM

• Let L = L(M) be a regular language, where M is
DFSM, & w ∈ Σ*. It is decidable whether

• w ∈ L

• L(M) = ∅

• Algo 1: Mark all reachable states. See if any are accepting.

• Algo 2: Create unique minimal and see if any are accepting

• L(M) = Σ*

Decision Problems w/FSM

• Let L = L(M) be a regular language, where M is
DFSM, & w ∈ Σ*. It is decidable whether

• L(M) is infinite

• Use pumping lemma!

• Claim: if L(M) infinite then must have w s.t. |K| ≤ |w| < 2 |K| - 1.

• L(M1) ⊆ L(M2)

• Difference is empty

• L(M1) = L(M2)

• Use above or compare canonical minimal DFSM’s

Programming in Haskell!

According to Larry Wall
(designer of PERL):  

… a language by geniuses
for geniuses

He’s wrong — at least about the latter part
though you might agree when we talk about monads

Read Haskell Tutorials

• All on links page from course web page

• I like “Learn you a Haskell for greater good”

• O’Reilly text: “Real World Haskell” free on-line

• Print Haskell cheat sheet

• Use “The Haskell platform”, available at
- http://www.haskell.org/

Using GHC

• to enter interactive mode type: ghci
- :load myfile.hs -- :l also works

- after changes type :reload or :r

- Control-d to exit

- :set +t -- prints more type info when interactive

- “it” is result of expression

- Evaluate “it + 1” gives one more than previous
answer.

Built-in data types
• Unit has only ()

• Bool: True, False with not, &&, ||

• Int: 5, -5, with +, -, *, ^, =, /=, <, >, >=, ...
- div, mod defined as prefix operators (`div` infix)

- Int fixed size (usually 64 bits)

- Integer gives unbounded size

• Float, Double: 3.17, 2.4e17 w/ +, -, *, /, =, <, >, >=,
<=, sin, cos, log, exp, sqrt, sin, atan.

More Basic Types

• Char: ‘n’

• String = [Char], not really primitive
- "hello"++" there", length

- No substring, but `isInfixOf` for all lists

- Also ‘isPrefixOf`, `isSuffixOf ’

• Type classes (later) provide relations between
classes.

Prefix op w/out ``!

import Data.List

list of Char

Interactive Programming
with ghci

• Type expressions and run-time will evaluate

• Define abbreviations with “let”
- let double n = n + n

- let seven = 7

• “let” not necessary at top level in programs
loaded from files

Lists

• Lists
- [2,3,4,9,12]: [Integer]

- [] -- empty list

- Must be homogenous

- Functions: length, ++, :, map, rev
• also head, tail, but normally don’t use!

Polymorphic Types

• [1,2,3]:: [Integer]

• [“abc”, “def”]:: [[Char]], ...

• []:: [a]

• map:: (a → b) → ([a] → [b])

• Use :t exp to get type of exp

Pattern Matching

• Decompose lists:
- [1,2,3] = 1:(2:(3:[]))

• Define functions by cases using pattern
matching:

prod [] = 1  
prod (fst:rest) = fst * (prod rest)

Pattern Matching

• Desugared through case expressions:
- head' :: [a] -> a  

head' [] = error "No head for empty lists!"  
head' (x:_) = x

• equivalent to
- head' xs = case xs of  

 [] -> error "No head for empty lists!"  
 (x:_) -> x  

Type constructors

• Tuples
- (17,”abc”, True) : (Integer , [Char] , Bool)

- fst, snd defined only on pairs

• Records exist as well

More Pattern Matching

• (x,y) = (5 `div` 2, 5 `mod` 2)

• hd:tl = [1,2,3]

• hd:_ = [4,5,6]
- “_” is wildcard.

