Lecture 5: Pumping Lemma

CSCI 8i
Spring, 2015
Kim Bruce

Interpreting Regular Expressions

- For each regular expression we define language it denotes:
- $L(\underline{\varepsilon})=\{\varepsilon\}, L(\underline{\varnothing})=\varnothing$, and $L(\underline{a})=\{$ a\} for all $a \in \Sigma$
- $\mathrm{L}\left(\alpha^{*}\right)=(\mathrm{L}(\alpha))^{*}=\left\{\mathrm{w}_{\mathrm{I}} \ldots \mathrm{w}_{\mathrm{n}} \mid \mathrm{n} \geq 0, \mathrm{w}_{\mathrm{i}} \in \mathrm{L}(\alpha)\right\}$
- $L(\alpha \beta)=L(\alpha) L(\beta)$ and $L(\alpha \cup \beta)=L(\alpha) \cup L(\beta)$.

Regular Grammars

- A regular grammar G is a quadruple $(\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{S})$ where
- V is the rule alphabet (with terminals \& non-terminals)
- $\Sigma \subseteq \mathrm{V}$ is the set of terminals
- R is a finite set of rules of the form $\mathrm{X} \rightarrow \mathrm{w}$,
- $X \rightarrow \varepsilon, X \rightarrow b$, or $X \rightarrow b Y$ for some nonterminals $X, Y, \&$ terminal b.
- $\mathrm{S} \in \mathrm{V}-\Sigma$ is the start symbol
- Examples: $\mathrm{S} \rightarrow \mathrm{aTa}$ or $\mathrm{Sa} \rightarrow \mathrm{bT}$ not legal

Examples

- Numbers:
- $\mathrm{S} \rightarrow \mathrm{oS}, \ldots, \mathrm{S} \rightarrow 9 \mathrm{~S}$
- $S \rightarrow \varepsilon$
- $\mathrm{S} \rightarrow$. T
- $\mathrm{T} \rightarrow \mathrm{oT}, \ldots, \mathrm{T} \rightarrow 9 \mathrm{~T}$
- $\mathrm{T} \rightarrow \varepsilon$
- Java identifiers

Regular Languages

- Easy to show languages are regular, but how do we show they are not?
- Myhill-Nerode: Show \approx L has infinite number of equivalence classes: e.g., $\left\{w^{2} w^{R} \mid w \in\{a, b\}^{*}\right\}$
- Failure of closure properties.
- E.g., find regular set so concatenating or union or intersection w / L not give regular set
- Ex: $\mathrm{L}=\{\mathrm{w} \mid$ \#a's = \#b's in w\}. If L regular then so is $\mathrm{L}=\mathrm{L} \cap \mathrm{L}\left(\mathrm{a}^{*} \mathrm{~b}^{*}\right)=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}-$ - but show it's not soon
- Pumping lemma ...

Big Picture

- How many languages (over a finite alphabet)?
- How many regular languages?
- Every finite language is regular.
- Is English finite?
- Closed under
- Union, intersection, Kleene *, complement, difference, reverse, and letter substitution
- Let $\mathrm{h}: \Sigma_{\mathrm{o}} \rightarrow \Sigma_{\mathrm{I}}{ }^{*}$. Then L regular $\Rightarrow \mathrm{h}(\mathrm{L})$ regular

Pumping Lemma:

If L is regular, there is a number p (the pumping length) where, if $w \in L$ of length at least p, then there are $x, y, \& z$ with $w=x y z$, such that:
I. for each $\mathrm{i} \geq 0, \mathrm{x} \mathrm{y}^{\mathrm{i}} \mathrm{z} \in \mathrm{L}$;
2. $|y|>0$; and
3. $|x y| \leq p$.

Use to show languages not regular!

Using Pumping

- Show $L=\left\{0^{n} I^{n} \mid n \geq 0\right\}$ is not regular
- Proof by contradiction. Assume regular.
- Therefore exists p from P.L.
- Let w = opip $\in \mathrm{L}$
- By P.L. can write $w=x y z$ s.t. $|x y|=k \leq p$ s.t. $x^{i z} \in L$ for all i
- But $|x y| \leq p \Rightarrow x, y$ consist of all o's.
- So $\mathrm{x}=\mathrm{o}^{\mathrm{i}}, \mathrm{y}=\mathrm{oi}, \mathrm{z}=\mathrm{op}^{-\mathrm{i}-\mathrm{i}} \mathrm{I}$ p where $\mathrm{j}>0$.
- Pick $\mathrm{n}=2$, then $\mathrm{xy}^{2} \mathrm{Z}=\mathrm{ob}^{\mathrm{p}+\mathrm{j} \mathrm{P}} \notin \mathrm{L}$. Contradiction so not regular!

Pf of Pumping Lemma

- Claim $x y^{i} z \in L$ for all $\mathrm{i} \geq 0$.
- Proof by picture!

Proof of Pumping Lemma

- Let (K, $\Sigma, \delta, \mathrm{s}, \mathrm{A}$) be a DFA accepting L
- Let $\mathrm{p}=|\mathrm{K}|$.
- Let $w=a_{1} a_{2} \ldots a_{m} \in L$ with $m \geq p$.
- Define $\mathrm{r}_{\mathrm{o}}, \mathrm{r}_{\mathrm{r}}, \ldots, \mathrm{r}_{\mathrm{m}}$ by $\mathrm{r}_{\mathrm{o}}=\mathrm{s}$ and $\mathrm{r}_{\mathrm{i}+\mathrm{I}}=\delta\left(\mathrm{r}_{\mathrm{r}}, \mathrm{a}_{\mathrm{i}+\mathrm{I}}\right)$.

Then $r_{m} \in A$ because $w \in L$

- Because $m \geq p, \exists i \neq j \leq p$ s.t. $r_{i}=r_{j}$
- Let $x=a_{I_{1}} . . a_{i_{1}-1}, y=a_{i} \ldots a_{i}, z=a_{j_{+1}} \ldots a_{m}$ so $y \neq \varepsilon$

Pumping Lemma Game

- To show L not regular
- Opponent picks p
- I pick w s.t. $|w| \geq \mathrm{p}$
- They pick decomposition $\mathrm{w}=\mathrm{xyz}$ s.t. $|\mathrm{xy}| \leq \mathrm{p}, \mathrm{y} \neq \varepsilon$
- I show there is some is.t. $\mathrm{x} \mathrm{y}^{\mathrm{i}} \notin \mathrm{L}$
- If I succeed then I have shown L not regular!

Regular or Not?

- L = \{aibi : o <i <j <200o\}.
- $L=\{a i b i: i, j \geq 0$ and $i<j\}$.
- $L=\left\{a^{i b} \mathrm{i}: \mathrm{i}, \mathrm{j} \geq \mathrm{o}\right.$ and $\left.\mathrm{i} \geq \mathrm{j}\right\}$.
- $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}:|\mathrm{w}|\right.$ is a power of 2$\}$

Decision Problems w/FSM

- Let $\mathrm{L}=L(\mathrm{M})$ be a regular language, where M is DFSM, \& $\mathrm{w} \in \Sigma^{*}$. It is decidable whether
- $L(\mathrm{M})$ is infinite
- Use pumping lemma!
- Claim: if $L(M)$ infinite then must have w s.t. $|\mathrm{K}| \leq|w|<2|\mathrm{~K}|-\mathrm{I}$.
- $L\left(\mathrm{M}_{\mathrm{I}}\right) \subseteq L\left(\mathrm{M}_{2}\right)$
- Difference is empty
- $L\left(\mathrm{M}_{\mathrm{I}}\right)=L\left(\mathrm{M}_{2}\right)$
- Use above or compare canonical minimal DFSM's

Decision Problems w/FSM

- Let $\mathrm{L}=L(\mathrm{M})$ be a regular language, where M is DFSM, \& w $\in \Sigma^{*}$. It is decidable whether
- $w \in L$
- $L(\mathrm{M})=\varnothing$
- Algo i: Mark all reachable states. See if any are accepting.
- Algo 2: Create unique minimal and see if any are accepting
- $L(\mathrm{M})=\Sigma^{*}$

