Lecture 5: Pumping Lemma

CSCI 81 Spring, 2015

Kim Bruce

Interpreting Regular Expressions

- For each regular expression we define language it denotes:
 - $L(\underline{\varepsilon}) = \{\varepsilon\}, L(\underline{\emptyset}) = \emptyset$, and $L(\underline{a}) = \{a\}$ for all $a \in \Sigma$
 - $L(\alpha^*) = (L(\alpha))^* = \{w_1...w_n \mid n \ge 0, w_i \in L(\alpha)\}$
 - $L(\alpha\beta) = L(\alpha)L(\beta)$ and $L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$.

Regular Expressions = Regular Languages

- If α is a regular expression then there is a DFM M s.t. L(α) = L(M)
 - Construct NDFM by induction on regular expressions
 - Base case of single symbols easy
 - union, concatenation, * simple
- Other direction trickier. Add new start & final. Tear apart NDFM by removing states and writing labels as regular expressions.
 - See text for details

Regular Grammars

- A regular grammar G is a quadruple (V, Σ , R, S) where
 - V is the rule alphabet (with terminals & non-terminals)
 - $\Sigma \subseteq V$ is the set of terminals
 - R is a finite set of rules of the form $X \rightarrow w$,
 - $\bullet \quad X \to \epsilon, X \to b, \, \text{or} \; X \to b Y \text{ for some nonterminals } X, Y, \, \& \, \text{terminal } b.$
 - $S \in V \Sigma$ is the start symbol
- Examples: $S \rightarrow aTa \text{ or } Sa \rightarrow bT \text{ not legal}$

Examples

- Numbers:
 - $S \rightarrow oS, ..., S \rightarrow 9S$
 - $S \rightarrow \varepsilon$
 - $S \rightarrow .T$
 - $T \rightarrow oT, ..., T \rightarrow 9T$
 - $T \rightarrow \epsilon$
- Java identifiers

Big Picture

- How many languages (over a finite alphabet)?
 - How many regular languages?
- Every finite language is regular.
 - Is English finite?
- Closed under
 - Union, intersection, Kleene *, complement, difference, reverse, and letter substitution
 - Let $h: \Sigma_{\circ} \to \Sigma_{I}^{*}$. Then L regular $\to h(L)$ regular

Regular Languages

- Easy to show languages are regular, but how do we show they are not?
 - Myhill-Nerode: Show \ast_L has infinite number of equivalence classes: e.g., $\{ww^R \mid w \in \{a,b\}^*\,\}$
 - Failure of closure properties.
 - E.g., find regular set so concatenating or union or intersection w/L not give regular set
 - Ex: L = {w | #a's = #b's in w}. If L regular then so is L' = L ∩ L(a*b*) = {aⁿbⁿ | n ≥ 0} -- but show it's not soon.
 - Pumping lemma ...

Pumping Lemma:

If L is regular, there is a number p (the pumping length) where, if $w \in L$ of length at least p, then there are x, y, & z with w = xyz, such that:

I. for each $i \ge 0$, x yⁱ z \in L;

2. |y| > 0; and

3. $|xy| \le p$.

Use to show languages not regular!

Using Pumping

- Show L = { $O^{n}I^{n} | n \ge 0$ } is *not* regular
 - Proof by contradiction. Assume regular.
 - Therefore exists p from P.L.
 - Let $w = o^{p_1 p} \in L$
 - By P.L. can write w = xyz s.t. $|xy| = k \le p$ s.t. $xy^iz \in L$ for all i
 - But $|xy| \le p \Rightarrow x$, y consist of all o's.
 - So $\mathbf{x} = \mathbf{o}^i, \mathbf{y} = \mathbf{o}^j, \mathbf{z} = \mathbf{o}^{p i j} \mathbf{I}^p$ where $j > \mathbf{o}$.
 - Pick n = 2, then $xy^2z = o^{p+j}I^p \notin L$. Contradiction so not regular!

Proof of Pumping Lemma

- Let $(K, \Sigma, \delta, s, A)$ be a DFA accepting L
- Let p = |K|.
- Let $w = a_1 a_2 \dots a_m \in L$ with $m \ge p$.
- Define r_o, r_1, \ldots, r_m by $r_o = s$ and $r_{i+1} = \delta(r_i, a_{i+1})$. Then $r_m \in A$ because $w \in L$
- Because $m \ge p$, $\exists i \ne j \le p$ s.t. $r_i = r_j$
- Let $x = a_1...a_{i-1}$, $y = a_i...a_j$, $z = a_{j+1}...a_m$ so $y \neq \varepsilon$

Pf of Pumping Lemma

- Claim $xy^i z \in L$ for all $i \ge 0$.
 - Proof by picture!

Pumping Lemma Game

- To show L not regular
 - Opponent picks p
 - I pick w s.t. $|w| \ge p$
 - They pick decomposition w = xyz s.t. $|xy| \le p, y \ne \varepsilon$
 - I show there is some i s.t. $x\,y^i\,z \,{\notin}\, L$
- If I succeed then I have shown L not regular!

Regular or Not?

- L = {aⁱb^j : 0 \leq i <j <2000}.
- L = { $a^i b^j : i, j \ge 0$ and i < j }.
- L = { $a^i b^j : i, j \ge 0$ and $i \ge j$ }.
- L = {w \in {a,b}* : |w| is a power of 2}

Decision Problems w/FSM

- Let L = L(M) be a regular language, where M is DFSM, & w ∈ Σ*. It is decidable whether
 - $w \in L$
 - $L(M) = \emptyset$
 - Algo 1: Mark all reachable states. See if any are accepting.
 - Algo 2: Create unique minimal and see if any are accepting
 - $L(\mathbf{M}) = \Sigma^*$

Decision Problems w/FSM

- Let L = L(M) be a regular language, where M is DFSM, & w ∈ Σ*. It is decidable whether
 - *L*(M) is infinite
 - Use pumping lemma!
 - Claim: if L(M) infinite then must have w s.t. $|\mathbf{K}| \leq |\mathbf{w}| < 2$ $|\mathbf{K}|$ 1.
 - $L(M_1) \subseteq L(M_2)$
 - Difference is empty
 - $L(M_{I}) = L(M_{2})$
 - Use above or compare canonical minimal DFSM's