Lecture 4: Minimizing
Finite State Machines

CSCI 101
Spring, 2019
Kim Bruce

TAS:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen,
Alice Tan

Course web page: bttp.//www.cs pomona.edu/classes/csTor

New Homework

e Now available on line

e Turn in single pdf file to gradeScope

* New pairs in Piazza by tonight

Equivalence relations
* = is equivalence relation iff reflexive,
symmetric, transitive.
* ~jsright regulariff x~y=xa=yaforallaE X

e Ex. Let M be FSM over Z. Then define
x =M y iff dm(s,x) = dm(s,y). = is right-regular

* Equivalence class: {w} = {w’ € Z* | w = w'}

o In example, equiv class is all w going to same state q.

* Then L(M) is union of equivalence classes.

Minimizing FSM

* Def: x,y are indistinguishable wrt L, x =1 y iff
for all z € =¥, either both xz, yz € L or neither is

e Ex:if L = {w € 2+ | w does not contain aab as a substring}
then a and baba indistinguishable, but a and ab not.

* ~, is right regular equivalence relation
e States of new minimal machine will be

equivalence classes: {w}={v & Z*|v = w}

Example equiv classes

Observations

e No equiv class contains both u € L and v & L.
* If strings go to dead state, then all in same class
e More than one equiv class can contain elts of L

* If M is DFSM & q is state, then all strings going
to state q are in same equiv. class

o If L = L(M) then
equiv classes of L < # states of M

e Thus, if L is regular, then # equiv classes of L is finite.

Non-Regular Languages

* Some language have o # of equiv classes
e P-{wwRlw€&E{ab}*}
¢ [bl, [abl, [aab], [aaab], ... from P all distinct

e Thus P not regular.

Construct Minimal DFSM

Theorem: Let L be a regular language over some
alphabet Z. Then there is a DFSM M that
accepts L and that has precisely n states where n
is the number of equivalence classes of L. Any
other FSM that accepts L must either have more
states than M or it must be equivalent to M
except for state names.

But how do we find equivalence classes?
See homework!

Proof

Let M= (K, X, §, s, A), where:
e K consists of the n equivalence classes of L.
e s = ¢}, the equivalence class of € under L.
o A={[xl:xE L}. Well-defined!
o 8(xl, @) = [xal. Well-defined because right regular.

Show L = L(M) and unique minimal
Example

Proof

Lemma: Yu,v € Z*, ([el, uv) F-i™ (lul, v).

Use lemma to finish proof.

By lemma, (e}, w) F-m™* (Iwl, €) because w = we
Thus w € LM) iff [wl €A iff w E L.
Therefore LIM) = L.

Can’t be smaller machine. Unique as well.

X=MYy=>X=Yy

Lemma: YVu,v € =¥ (e}, uv) Fv* (ul, v)

Proof by Induction on length of u:
Clearly true foru=¢

S’pose (lel, uv) F-v* ([ul, v) for lul = k.
Prove k+1: S’pose u = yc where lyl =k, c e 2.

Then (fel, yev) Fm* (yl, ¢v) by induction
But (yl, cv) I-m (ycl, v) by def of &
So (el, yev) Fm™* (ycl, v). v/

Myhill-Nerode Theorem

A language is regular if and only if it is the
union of some of the equivalence classes of a
right regular equivalence relation with
finitely many equivalence classes.

Regular Expressions

* Language of regular expressions over 2
e The symbols g, J, and a for a EX are regular
expressions.

e Use underlines to distinguish the regular expression symbols
from their other uses.

o If ais a regular expression, so is (0*).

e If a and P are regular expressions,
so are (a B) and (o U).
o Text also uses (o), we'll define (o) = (o (@)

o Often drop () when clear how to reconstruct

Cecl noest pas une fufie.

Neither are a, I, ...!

Examples

e (aU g -- means optional a

e also written a?

e Regular expressions used in Bash:

* http://tldp.org/I.DP/Bash-Beginners-Guide/html/
sect_o4_or.html

e [o9l+(lo-91*?\.[o-9}+

e decimal numbers

RegExp in Unix

(Operator Effect
Matches any single character.

? The preceding item is optional and will be matched, at most, once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

{N} The preceding item is matched exactly N times.

{N,} The preceding item is matched N or more times.

{N.M} The preceding item is matched at least N times, but not more than M times.

- represents the range if it's not first or last in a list or the ending point of a range in a list.

A Matches the empty string at the beginning of a line; also characters not in the range of a
Lict

$ Matches the empty string at the end of a line.

\b Matches the empty string at the edge of a word.

\B Matches the empty string provided it's not at the edge of a word.

\< Match the empty string at the beginning of word.

Cheating on Crossword
Puzzles!

* grep "\<c..h\>' /usr/share/dict/words

o returns all 5-letter words in dictionary that start with
c and end with h.

* \< matches empty string at beginning of line

* \> matches empty string at end of line

Interpreting Regular
Expressions

* For each regular expression we define
language it denotes:

e Li®={e}, L@)=T,and L@ ={a} forallaE >
e L(a* = (L()* = {wr..wn I n 2 0, w; € L)}
o L(af) = LWL and LaUP) = L) U LE).

e If 2 ={a,b}, what is L(aba)?

What is L((aUb)*aab(aUb)*)?
IsL((aUDb)* =L@*uUb*?

Regular Expressions =
Regular Languages

e If o is a regular expression then there is a
DFM M s.t. L(a) = LOM)

e Construct NDFM by induction on regular
expressions

o Base case of single symbols easy

 union, concatenation, * simple

* Other direction trickier. Add new start &
final. Tear apart NDFM by removing states
and writing labels as regular expressions.

Creating RegExp from DFM

¢ Get rid of unreachable states
* Add new start state s’ w/e-move to original s

* Add new accepting state £’ w/e-move from
original accepting states.

e Make originals non-accepting

e Now one start and one accepting with no
transitions to start or from accepting.

 If original had that then no need to change.

Creating RegExp from DFM

° Change transitions so

e exactly one transition from all q # f’ to every state
but s’

* exactly one transition into all q # s’ from all states
but f’

o No transition from new final, none to new start, but all others!
* How?
e If no transitions, add one with & label

e If more than one, group using reg exp. involving U

Remove intermediate states

* Remove states one at a time until only s’, f’

* When remove states, change labels to reg exp.

zU(wx*y)
q0 q2

Done when down to s, f’

