Lecture 4: Minimizing Finite State Machines

CSCI 101 Spring, 2019 Kim Bruce TA's:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen, Alice Tan

Course web page: <u>http://www.cs.pomona.edu/classes/cs101</u>

New Homework

- Now available on line
 - Turn in single pdf file to gradeScope
- New pairs in Piazza by tonight

Equivalence relations

- ≈ is equivalence relation iff reflexive, symmetric, transitive.
- \approx is right regular iff $x \approx y \Rightarrow xa \approx ya$ for all $a \in \Sigma$
- Ex. Let M be FSM over Σ . Then define $x \approx_M y$ iff $\delta_M(s,x) = \delta_M(s,y)$. \approx is right-regular
- Equivalence class: $[w] = \{w' \in \Sigma^* \mid w \approx w'\}$
 - In example, equiv class is all w going to same state q.
- Then L(M) is union of equivalence classes.

Minimizing FSM

- Def: x, y are *indistinguishable* wrt L, x ≈_L y iff for all z ∈ Σ*, either both xz, yz ∈ L or neither is
 - Ex: if L = {w ∈ Σ* | w does not contain aab as a substring} then a and baba indistinguishable, but a and ab not.
- *«*L is right regular equivalence relation
- States of new minimal machine will be equivalence classes: [w] = {v ∈ Σ* | v ≈_L w}

Example equiv classes

Observations

- No equiv class contains both $u \in L$ and $v \notin L$.
- If strings go to dead state, then all in same class
- More than one equiv class can contain elts of L
- If M is DFSM & q is state, then all strings going to state q are in same equiv. class
- If L = *L*(M) then # equiv classes of L ≤ # states of M
 - Thus, if L is regular, then # equiv classes of L is finite.

Non-Regular Languages

- Some language have ∞ # of equiv classes
 - $P = \{ww^R | w \in \{a,b\}^*\}$
 - [b], [ab], [aab], [aaab], ... from P all distinct
 - Thus P not regular.

Construct Minimal DFSM

Theorem: Let L be a regular language over some alphabet Σ . Then there is a DFSM M that accepts L and that has precisely n states where n is the number of equivalence classes of L. Any other FSM that accepts L must either have more states than M or it must be equivalent to M except for state names.

But how do we find equivalence classes? See homework!

Proof

Let M = (K, Σ , δ , s, A), where:

- K consists of the n equivalence classes of L.
- s = $[\varepsilon]$, the equivalence class of ε under L.
- $A = \{[x] : x \in L\}$. Well-defined!
- $\delta([x], a) = [xa]$. Well-defined because right regular.
- Show L = *L*(M) and unique minimal *Example*

Proof

Lemma: $\forall u, v \in \Sigma^*$, $([\varepsilon], uv) \vdash_M^* ([u], v)$.

Use lemma to finish proof.

By lemma, ([ϵ], w) \vdash_{M}^{*} ([w], ϵ) because w = w ϵ

Thus $\mathbf{w} \in L(\mathbf{M})$ iff $[\mathbf{w}] \in \mathbf{A}$ iff $\mathbf{w} \in \mathbf{L}$.

Therefore L(M) = L.

Can't be smaller machine. Unique as well.

 $x \mathrel{\approx_M} y \mathrel{\Rightarrow} x \mathrel{\approx} y$

Lemma: $\forall u, v \in \Sigma^*$, ([ε], uv) \vdash_M^* ([u], v)

Proof by Induction on length of u: Clearly true for $u = \varepsilon$

S'pose ([ϵ], uv) \vdash_{M} * ([u], v) for $\mid u \mid = k$. Prove k+1: S'pose u = yc where $\mid y \mid = k, c \in \Sigma$.

Then ([ε], ycv) \vdash_{M}^{*} ([y], cv) by induction But ([y], cv) \vdash_{M} ([yc], v) by def of δ So ([ε], ycv) \vdash_{M}^{*} ([yc], v). \checkmark

Myhill-Nerode Theorem

• A language is regular if and only if it is the union of some of the equivalence classes of a right regular equivalence relation with finitely many equivalence classes.

Regular Expressions

- Language of regular expressions over Σ:
 - The symbols $\underline{\varepsilon}, \underline{\emptyset}$, and \underline{a} for $a \in \Sigma$ are regular expressions.
 - Use underlines to distinguish the regular expression symbols from their other uses.
 - If α is a regular expression, so is (α *).
 - If α and β are regular expressions, so are (α β) and (α ∪ β).
 - Text also uses (α^{*}), we'll define (α^{*}) = (α (α^{*}))
 - Often drop () when clear how to reconstruct

Examples

- $(\underline{a} \cup \underline{\epsilon})$ -- means optional a
 - also written <u>a</u>?
- Regular expressions used in Bash:
 - <u>http://tldp.org/LDP/Bash-Beginners-Guide/html/</u> sect_04_01.html
 - [0-9]+(\.[0-9]*)?|\.[0-9]+
 - decimal numbers

RegExp in Unix

Operator	Effect
	Matches any single character.
?	The preceding item is optional and will be matched, at most, once.
*	The preceding item will be matched zero or more times.
+	The preceding item will be matched one or more times.
{N}	The preceding item is matched exactly N times.
{N,}	The preceding item is matched N or more times.
{N,M}	The preceding item is matched at least N times, but not more than M times.
-	represents the range if it's not first or last in a list or the ending point of a range in a list.
^	Matches the empty string at the beginning of a line; also characters not in the range of a
\$	Matches the empty string at the end of a line.
٧b	Matches the empty string at the edge of a word.
\B	Matches the empty string provided it's not at the edge of a word.
/<	Match the empty string at the beginning of word.

Cheating on Crossword Puzzles!

- grep '\<c...h\>' /usr/share/dict/words
 - returns all 5-letter words in dictionary that start with c and end with h.
 - \< matches empty string at beginning of line
 - \> matches empty string at end of line

Interpreting Regular Expressions

- For each regular expression we define language it denotes:
 - $L(\underline{\epsilon}) = \{\epsilon\}, L(\underline{\emptyset}) = \emptyset$, and $L(\underline{a}) = \{a\}$ for all $a \in \Sigma$
 - $L(\alpha^*) = (L(\alpha))^* = \{w_1...w_n \mid n \ge 0, w_i \in L(\alpha)\}$
 - $L(\alpha\beta) = L(\alpha)L(\beta)$ and $L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$.
- If $\Sigma = \{a, b\}$, what is L(<u>aba</u>)? What is L((<u>a \cup b</u>)*<u>aab(a \cup b</u>)*)? Is L((<u>a \cup b</u>)*) = L(<u>a</u>* \cup <u>b</u>*)?

Regular Expressions = Regular Languages

- If α is a regular expression then there is a DFM M s.t. L(α) = L(M)
 - Construct NDFM by induction on regular expressions
 - Base case of single symbols easy
 - union, concatenation, * simple
- Other direction trickier. Add new start & final. Tear apart NDFM by removing states and writing labels as regular expressions.

Creating RegExp from DFM

- Get rid of unreachable states
- Add new start state s' w/ɛ-move to original s
- Add new accepting state f' w/ε-move from original accepting states.
 - Make originals non-accepting
- Now one start and one accepting with no transitions to start or from accepting.
 - If original had that then no need to change.

Creating RegExp from DFM

- Change transitions so
 - exactly one transition from all q ≠ f' to every state but s'
 - exactly one transition into all q ≠ s' from all states but f'
 - No transition from new final, none to new start, but all others!
- How?
 - If no transitions, add one with \varnothing label
 - If more than one, group using reg exp. involving \cup

