## Lecture 4: Minimizing Finite State Machines

CSCI ioi
Spring, 2019
Kim Bruce
TA's:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen, Alice Tan

Course web page: http://wwwe.cs.pomona.edu/classes/csIoI

## Equivalence relations

- $\approx$ is equivalence relation iff reflexive, symmetric, transitive.
- $\approx$ is right regular iff $x \approx y \Rightarrow x a \approx y$ for all $a \in \Sigma$
- Ex. Let M be FSM over $\Sigma$. Then define $\mathrm{x} \approx \mathrm{M} y$ iff $\delta_{M}(s, x)=\delta_{M}(s, y) . \approx$ is right-regular
- Equivalence class: $[\mathrm{w}]=\left\{\mathrm{w}^{\prime} \in \Sigma^{*} \mid \mathrm{w} \approx \mathrm{w}^{\prime}\right\}$
- In example, equiv class is all w going to same state $q$.
- Then $L(M)$ is union of equivalence classes.


## New Homework

- Now available on line
- Turn in single pdf file to gradeScope
- New pairs in Piazza by tonight


## Minimizing FSM

- Def: $\mathrm{x}, \mathrm{y}$ are indistinguishable wrt $\mathrm{L}, \mathrm{x} \approx \mathrm{L} \mathrm{y}$ iff for all $z \in \Sigma^{*}$, either both $x z, y z \in L$ or neither is
- Ex: if $L=\{w \in \Sigma * \mid w$ does not contain aab as a substring $\}$ then a and baba indistinguishable, but a and ab not.
- $\approx_{\mathrm{L}}$ is right regular equivalence relation
- States of new minimal machine will be equivalence classes: $[\mathrm{w}]=\left\{\mathrm{v} \in \Sigma^{*} \mid \mathrm{v} \approx \mathrm{L} w\right\}$


## Observations

- No equiv class contains both $u \in L$ and $v \notin L$.
- If strings go to dead state, then all in same class
- More than one equiv class can contain elts of L
- If M is DFSM \& q is state, then all strings going to state q are in same equiv. class
- If $\mathrm{L}=L(\mathrm{M})$ then
\# equiv classes of $\mathrm{L} \leq$ \# states of M
- Thus, if $L$ is regular, then \# equiv classes of $L$ is finite.


## Non-Regular Languages

- Some language have $\infty$ \# of equiv classes
- $P=\left\{w^{R} \mid w \in\{a, b\}^{*}\right\}$
- [b], [ab], [aab], [aaab], ... from P all distinct
- Thus P not regular.


## Construct Minimal DFSM

Theorem: Let L be a regular language over some alphabet $\Sigma$. Then there is DFSM M that accepts $L$ and that has precisely $n$ states where $n$ is the number of equivalence classes of L. Any other FSM that accepts L must either have more states than $M$ or it must be equivalent to $M$ except for state names.

But how do we find equivalence classes? See homework!

## Proof

Let $M=(K, \Sigma, \delta, s, A)$, where:

- $K$ consists of the $n$ equivalence classes of $L$.
- $s=[\varepsilon]$, the equivalence class of $\varepsilon$ under $L$.
- $\mathrm{A}=\{[\mathrm{x}]: \mathrm{x} \in \mathrm{L}\}$. Well-defined!
- $\delta([\mathrm{x}], \mathrm{a})=[\mathrm{xa}]$. Well-defined because right regular.

Show $\mathrm{L}=L(\mathrm{M})$ and unique minimal
Example

## Proof

Lemma: $\forall \mathrm{u}, \mathrm{v} \in \Sigma^{*},\left.\quad([\varepsilon], \mathrm{uv})\right|_{-\mathrm{m}^{*}}([\mathrm{u}], \mathrm{v})$.
Use lemma to finish proof.
By lemma, ([ $[\varepsilon], \mathrm{w})\left.\right|_{-\mathrm{m}}$ ( $[\mathrm{w}], \varepsilon$ ) because $\mathrm{w}=\mathrm{w} \varepsilon$
Thus $\mathrm{w} \in L(\mathrm{M})$ iff $[\mathrm{w}] \in \mathrm{A}$ iff $\mathrm{w} \in \mathrm{L}$.
Therefore $L(\mathrm{M})=\mathrm{L}$.
Can't be smaller machine. Unique as well.

$$
x \approx M y \Rightarrow x \approx y
$$

Lemma: $\forall \mathrm{u}, \mathrm{v} \in \Sigma^{*},\left.\quad([\varepsilon], \mathrm{uv})\right|_{-\mathrm{M}}{ }^{*}([\mathrm{u}], \mathrm{v})$

Proof by Induction on length of $u$ :
Clearly true for $\mathrm{u}=\varepsilon$
S'pose ([£], uv) $\left.\right|_{-\mathrm{m}^{*}([u], ~ v) ~ f o r ~ l u l ~} ^{=} \mathrm{k}$.
Prove $\mathrm{k}+\mathrm{I}$ : S'pose $\mathrm{u}=\mathrm{yc}$ where $|\mathrm{y}|=\mathrm{k}, \mathrm{c} \varepsilon \Sigma$.

Then ( $[\varepsilon], \mathrm{ycv}) \mid-\mathrm{M}^{*}([y], \mathrm{cv})$ by induction But ([y], cv) $\left.\right|_{-\mathrm{m}}([\mathrm{yc}], \mathrm{v})$ by def of $\delta$ So ([£], ycv) $\left.\right|_{-\mathrm{m}^{*}}([y c], \mathrm{v})$.

## Myhill-Nerode Theorem

- A language is regular if and only if it is the union of some of the equivalence classes of a right regular equivalence relation with finitely many equivalence classes.


## Regular Expressions

- Language of regular expressions over $\Sigma$ :
- The symbols $\underline{\varepsilon}, \underline{\varnothing}$, and $\underline{a}$ for $\mathrm{a} \in \Sigma$ are regular expressions.
- Use underlines to distinguish the regular expression symbols from their other uses.
- If $\alpha$ is a regular expression, so is ( $\alpha^{*}$ ).
- If $\alpha$ and $\beta$ are regular expressions, so are $(\alpha \beta)$ and $(\alpha \cup \beta)$.
- Text also uses $\left(\alpha^{+}\right)$, we'll define $\left(\alpha^{+}\right)=\left(\alpha\left(\alpha^{*}\right)\right)$
- Often drop () when clear how to reconstruct



## Examples

- $(\underline{a} \cup \underline{\varepsilon})$-- means optional a
- also written ${ }^{\text {a }}$ ?
- Regular expressions used in Bash:
- http://tldp.org/LDP/Bash-Beginners-Guide/html/ sect_04_or.html
- [o-9]+( $1 .[0-9]^{*}$ )? $\mid \backslash .[0-9]+$
- decimal numbers


## Cheating on Crossword Puzzles!

- grep '\<c...h\>' /usr/share/dict/words
- returns all 5 -letter words in dictionary that start with c and end with h .
- $\quad<$ matches empty string at beginning of line
- $\>$ matches empty string at end of line


## Interpreting Regular Expressions

- For each regular expression we define language it denotes:
- $L(\varepsilon)=\{\varepsilon\}, L(\varnothing)=\varnothing$, and $L(\underline{a})=\{$ a for all $a \in \Sigma$
- $\mathrm{L}\left(\alpha^{*}\right)=(\mathrm{L}(\alpha))^{*}=\left\{\mathrm{w}_{\mathrm{r}} . . . \mathrm{w}_{\mathrm{n}} \mid \mathrm{n} \geq 0, \mathrm{w}_{\mathrm{i}} \in \mathrm{L}(\alpha)\right\}$
- $L(\alpha \beta)=L(\alpha) L(\beta)$ and $L(\alpha \cup \beta)=L(\alpha) \cup L(\beta)$.
- If $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, what is $\mathrm{L}(\mathrm{aba})$ ?

What is $\mathrm{L}\left((\underline{\mathrm{a}} \cup \underline{\mathrm{b}})^{*} \underline{\left.\operatorname{aab}(\underline{a} \cup \underline{\mathrm{~b}})^{*}\right) \text { ? }}\right.$
Is $L\left((\underline{a} \cup \underline{b})^{*}\right)=L\left(\underline{a}^{*} \cup \underline{b}^{*}\right)$ ?

## Regular Expressions = Regular Languages

- If $\alpha$ is a regular expression then there is a DFM M s.t. $\mathrm{L}(\alpha)=\mathrm{L}(\mathrm{M})$
- Construct NDFM by induction on regular expressions
- Base case of single symbols easy
- union, concatenation, * simple
- Other direction trickier. Add new start \& final. Tear apart NDFM by removing states and writing labels as regular expressions.


## Creating RegExp from DFM

- Get rid of unreachable states
- Add new start state $s^{\prime} w / \varepsilon$-move to original $s$
- Add new accepting state $f^{\prime} w / \varepsilon$-move from original accepting states.
- Make originals non-accepting
- Now one start and one accepting with no transitions to start or from accepting.
- If original had that then no need to change.


## Creating RegExp from DFM

- Change transitions so
- exactly one transition from all $q \neq f$ ' to every state but s'
- exactly one transition into all $q \neq s$ ' from all states but f'
- No transition from new final, none to new start, but all others!
- How?
- If no transitions, add one with $\varnothing$ label
- If more than one, group using reg exp. involving $\cup$


## Remove intermediate states

- Remove states one at a time until only s', $\mathrm{f}^{\prime}$
- When remove states, change labels to reg exp
$\Downarrow$


Done when down to $\mathrm{s}^{\prime}, \mathrm{f}^{\prime}$

