
Lecture 4: Minimizing
Finite State Machines

CSCI 101
Spring, 2019

Kim Bruce
TA’s:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen,

Alice Tan 

Course web page: http://www.cs.pomona.edu/classes/cs101

New Homework

• Now available on line

• Turn in single pdf file to gradeScope

• New pairs in Piazza by tonight

Equivalence relations

• ≈ is equivalence relation iff reflexive,
symmetric, transitive.

• ≈ is right regular iff x ≈ y ⇒ xa ≈ ya for all a ∈ Σ

• Ex. Let M be FSM over Σ. Then define 
x ≈M y iff δM(s,x) = δM(s,y). ≈ is right-regular

• Equivalence class: [w] = {w’ ∈ Σ* | w ≈ w’}

• In example, equiv class is all w going to same state q.

• Then L(M) is union of equivalence classes.

Minimizing FSM

• Def: x, y are indistinguishable wrt L, x ≈L y iff  
for all z ∈ Σ*, either both xz, yz ∈ L or neither is

• Ex: if L = {w ∈ Σ∗ | w does not contain aab as a substring}
then a and baba indistinguishable, but a and ab not.

• ≈L is right regular equivalence relation

• States of new minimal machine will be
equivalence classes: [w] = {v ∈ Σ* | v ≈L w}

Example equiv classes

Observations

• No equiv class contains both u ∈ L and v ∉ L.

• If strings go to dead state, then all in same class

• More than one equiv class can contain elts of L

• If M is DFSM & q is state, then all strings going
to state q are in same equiv. class

• If L = L(M) then  
 # equiv classes of L ≤ # states of M

• Thus, if L is regular, then # equiv classes of L is finite.

Non-Regular Languages

• Some language have ∞ # of equiv classes

• P = {wwR | w ∈ {a,b}* }

• [b], [ab], [aab], [aaab], ... from P all distinct

• Thus P not regular.

Construct Minimal DFSM

Theorem: Let L be a regular language over some
alphabet Σ. Then there is a DFSM M that
accepts L and that has precisely n states where n
is the number of equivalence classes of L. Any
other FSM that accepts L must either have more
states than M or it must be equivalent to M
except for state names.

But how do we find equivalence classes?
See homework!

Proof

Let M = (K, Σ, δ, s, A), where:

 ● K consists of the n equivalence classes of L.

 ● s = [ε], the equivalence class of ε under L.

 ● A = {[x] : x ∈ L}. Well-defined!

 ● δ([x], a) = [xa]. Well-defined because right regular.

Show L = L(M) and unique minimal
Example

Proof

Lemma: ∀u,v ∈ Σ*, ([ε], uv) |-M* ([u], v).

Use lemma to finish proof.

By lemma, ([ε], w) |-M* ([w], ε) because w = wε

Thus w ∈ L(M) iff [w] ∈ A iff w ∈ L.

Therefore L(M) = L.

Can’t be smaller machine. Unique as well.
x ≈M y ⇒ x ≈ y

Lemma: ∀u,v ∈ Σ*, ([ε], uv) |-M* ([u], v)

Proof by Induction on length of u:  
Clearly true for u = ε 
 
S’pose ([ε], uv) |-M* ([u], v) for |u| = k.  
Prove k+1: S’pose u = yc where |y| = k, c ε Σ.

Then ([ε], ycv) |-M* ([y], cv) by induction 
But ([y], cv) |-M ([yc], v) by def of δ  
So ([ε], ycv) |-M* ([yc], v). ✔

• A language is regular if and only if it is the
union of some of the equivalence classes of a
right regular equivalence relation with
finitely many equivalence classes.

Myhill-Nerode Theorem Regular Expressions
• Language of regular expressions over Σ:

• The symbols ε, ∅, and a for a ∈ Σ are regular
expressions.

• Use underlines to distinguish the regular expression symbols
from their other uses.

• If α is a regular expression, so is (α∗).

• If α and β are regular expressions,  
so are (α β) and (α ∪ β).

• Text also uses (α+), we’ll define (α+) = (α (α∗))

• Often drop () when clear how to reconstruct

Neither are a, ∅, …!

Examples

• (a ∪ ε) -- means optional a

• also written a?

• Regular expressions used in Bash:

• http://tldp.org/LDP/Bash-Beginners-Guide/html/
sect_04_01.html

• [0-9]+(\.[0-9]*)? | \.[0-9]+

• decimal numbers

RegExp in Unix
Operator Effect

. Matches any single character.

? The preceding item is optional and will be matched, at most, once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

{N} The preceding item is matched exactly N times.

{N,} The preceding item is matched N or more times.

{N,M} The preceding item is matched at least N times, but not more than M times.

- represents the range if it's not first or last in a list or the ending point of a range in a list.

^ Matches the empty string at the beginning of a line; also characters not in the range of a
list.

$ Matches the empty string at the end of a line.

\b Matches the empty string at the edge of a word.

\B Matches the empty string provided it's not at the edge of a word.

\< Match the empty string at the beginning of word.

Cheating on Crossword
Puzzles!

• grep '\<c...h\>' /usr/share/dict/words

• returns all 5-letter words in dictionary that start with
c and end with h.

• \< matches empty string at beginning of line

• \> matches empty string at end of line

Interpreting Regular
Expressions

• For each regular expression we define
language it denotes:

• L(ε) = {ε}, L(∅) = ∅, and L(a) = {a} for all a ∈ Σ

• L(α*) = (L(α))* = {w1...wn | n ≥ 0, wi ∈ L(α)}

• L(αβ) = L(α)L(β) and L(α∪β) = L(α) ∪ L(β).

• If Σ = {a,b}, what is L(aba)? 
What is L((a∪b)*aab(a∪b)*)? 
Is L((a ∪ b)*) = L(a* ∪ b*) ?

Regular Expressions =
Regular Languages

• If α is a regular expression then there is a
DFM M s.t. L(α) = L(M)

• Construct NDFM by induction on regular
expressions

• Base case of single symbols easy

• union, concatenation, * simple

• Other direction trickier. Add new start &
final. Tear apart NDFM by removing states
and writing labels as regular expressions.

Creating RegExp from DFM

• Get rid of unreachable states

• Add new start state s’ w/ε-move to original s

• Add new accepting state f ’ w/ε-move from
original accepting states.

• Make originals non-accepting

• Now one start and one accepting with no
transitions to start or from accepting.

• If original had that then no need to change.

Creating RegExp from DFM

• Change transitions so

• exactly one transition from all q ≠ f ’ to every state
but s’

• exactly one transition into all q ≠ s’ from all states
but f ’

• No transition from new final, none to new start, but all others!

• How?

• If no transitions, add one with ∅ label

• If more than one, group using reg exp. involving ∪

Remove intermediate states
• Remove states one at a time until only s’, f ’

• When remove states, change labels to reg exp.

⇓

Done when down to s’, f ’

