Lecture 3: Finite State Machines

CSCI 101 Spring, 2019 Kim Bruce TA's:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen, Alice Tan

Course web page: <u>http://www.cs.pomona.edu/classes/cs101</u>

Homework

- Now available on line
 - Second problem has lots of parts
 - Turn in single file to gradeScope
- Can use JFLAP to create automata
 - See tutorial on-line you must read it!
 - Can test your FSM!
 - Save as gif and then open and save as pdf (e.g., using Preview on Mac)
 - \includegraphics{myfile.pdf} to insert in LaTeX file.

Nondeterministic Finite State Machine

- An NDFSM is a quintuple (K, Σ , Δ , s, A)
 - K is a finite set of states
 - Σ is a finite input alphabet
 - $s \in K$ is the start state
 - $A \subseteq K$ is set of accepting (or final) states
 - $\Delta \subseteq K \times (\Sigma \cup \{\epsilon\}) \times K$ is a finite transition relation
- Can have multiple or no transitions
- E-moves as well

Example

NDSM Computations

- NDSM accepts a word w if at least one of its computations accepts
 - Always guesses right path if there is one!
- Why NDSM's?
 - Easier to design!
 - But how to implement?

NFSM ≈ DFSM

- Each DFSM is clearly NFSM
 - Just make result of transition into relation
- Other direction uses sets of states
- Define $eps(q) = \{ q' \in K \mid (q, \varepsilon) \vdash^* (q', \varepsilon) \}$
 - All states reachable via $\epsilon\text{-moves}$ from q
 - Always includes q!

$NFSM \Rightarrow DFSM$

- Let $M = (K, \Sigma, \Delta, s, A_N)$ be an NFSM.
- Construct DFSM M' = (K', Σ , δ_D , *eps*(s), A_D) where
 - K' = *P*(K)
 - $\delta_D(Q,c) = \bigcup \{ eps(p) \mid \exists q \in Q. (q, c, p) \in \Delta \}$ for $Q \in P(K)$
 - $A_D = \{R \subseteq K \mid R \cap A_N \neq \emptyset\}$, i.e., R has a final state
- Show L(M) = L(M')

Example

Proof• Lemma: Let $w \in \Sigma^*$, $p, q \in K, P \in K'$. Then
 $(q,w) \vdash_M^* (p,\varepsilon)$ iff $(eps(q), w) \vdash_{M^*} (P,\varepsilon) \& p \in P$ • Assume lemma. Then
 $w \in L(M)$ iff $(s,w) \vdash_M^* (p,\varepsilon)$ for $p \in A_N$
iff $(eps(s),w) \vdash_{M^*} (P,\varepsilon)$ for $p \in P, p \in A_N$
iff $(eps(s),w) \vdash_{M^*} (P,\varepsilon)$ where $P \in A_D$
iff $w \in L(M')$ • Now prove lemma by induction on |w|*iff by Lemma*

Base cases • Show $(q,w) \vdash_M^* (p,\epsilon) \text{ iff } (eps(q), w) \vdash_M^* (P,\epsilon) \& p \in P$ • By induction on length of w. • Let |w| = 0. Thus $w = \epsilon$ • (\Rightarrow) Suppose $(q, \epsilon) \vdash_M^* (p,\epsilon)$. Then $p \in eps(q)$. • Thus $(eps(q), \epsilon) \vdash_M^* (eps(q), \epsilon) \& p \in eps(q)$. So let P = eps(q). \checkmark • (\Leftarrow) Suppose $(eps(q), \epsilon) \vdash_M^* (P,\epsilon) \& p \in P$. • Then P must be eps(q), and by def of eps, $p \in P$ implies $(q, \epsilon) \vdash_M^* (p, \epsilon) \checkmark$

Induction case

Show $(q,w) \vdash_{M} * (p,\varepsilon)$ iff $(eps(q), w) \vdash_{M} * (P,\varepsilon) \& p \in P$

• Suppose true for v s.t. |v| = n. Let w = za for z s.t. |z| = n

(⇒) Suppose (q,za) \vdash_{M}^{*} (p,ε) where (q,za) \vdash_{M}^{*} (p',a) & (p',a) \vdash_{M} (p",ε) & (p", ε) \vdash_{M} (p,ε)

Therefore $(q,z) \vdash_M^* (p', \epsilon) \& p \in eps(p'')$ By induction $\exists P \text{ s.t. } (eps(q), z) \vdash_{M'}^* (P', \epsilon) \& p' \in P' \&$ thus $(eps(q), za) \vdash_{M'}^* (P', a) \& p' \in P'$ By def of M', $(P', a) \vdash_{M'} (P, \epsilon)$ for $P = \bigcup \{eps(r) \mid \exists q \in P'. ((q, a), r) \in \Delta\}$ By above, $((p',a), p'') \in \Delta \& p \in eps(p'')$. Therefore $p \in P$ Thus $(eps(q), za) \vdash_{M'}^* (P, \epsilon)$ for $p \in P$. \checkmark Other direction left as exercise!

Converting to Deterministic

- Algorithm exactly as have defined in proof.
- See algorithm in text.

Closure Revisited

- Union:
 - Make sets of states disjoint, add new start w/ε moves to starts of original. Final states union of original finals
- Concatenation:
 - From each final state of first, add ϵ move to start of second. Final states are only those of second.

Exercise

• If L is regular, show that L* is regular.

Minimizing FSM

- Useful for implementing in hardware
- Given regular L, is there a minimal FSM accepting it?
- Is it unique?
- Can we construct it?

Equivalence relations

- ≈ is equivalence class iff reflexive, symmetric, transitive.
- \approx is right regular iff $x \approx y \Rightarrow xa \approx ya$ for all $a \in \Sigma$
- Ex. Let M be FSM over Σ. Then define x ≈_M y iff δ_M(s,x) = δ_M(s,y). ≈ is right-regular
- Equivalence class: $[\mathbf{w}] = {\mathbf{w}' \in \Sigma^* | \mathbf{w} \approx \mathbf{w}'}$
 - In example, equiv class is all w going to same state q.
- Then L(M) is union of equivalence classes.

Minimizing FSM

- Def: x, y are *indistinguishable* wrt L, x ≈_L y iff for all z ∈ Σ*, either both xz, yz ∈ L or neither is
 - Ex: if L = {w ∈ Σ* | w does not contain aab as a substring} then a and baba indistinguishable, but a and ab not.
- \approx_{L} is right regular equivalence relation
- States of new minimal machine will be equivalence classes: [w] = {v ∈ Σ* | v ≈_L w}

Example equiv classes