
Lecture 3: Finite State
Machines

CSCI 101
Spring, 2019

Kim Bruce
TA’s:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen,

Alice Tan 

Course web page: http://www.cs.pomona.edu/classes/cs101

Homework
• Now available on line

• Second problem has lots of parts

• Turn in single file to gradeScope

• Can use JFLAP to create automata

• See tutorial on-line - you must read it!

• Can test your FSM!

• Save as gif and then open and save as pdf (e.g., using
Preview on Mac)

• \includegraphics{myfile.pdf} to insert in LaTeX file.

Nondeterministic Finite State
Machine

• An NDFSM is a quintuple (K, Σ, Δ, s, A)

• K is a finite set of states

• Σ is a finite input alphabet

• s ∈ K is the start state

• A ⊆ K is set of accepting (or final) states

• Δ ⊆ K × (Σ ∪ {ε}) × K is a finite transition relation

• Can have multiple or no transitions

• ε-moves as well Example

NDSM Computations

• NDSM accepts a word w if at least one of its
computations accepts

• Always guesses right path if there is one!

• Why NDSM’s?

• Easier to design!

• But how to implement?

NFSM ≈ DFSM

• Each DFSM is clearly NFSM

• Just make result of transition into relation

• Other direction uses sets of states

• Define eps(q) = { q’ ∈ K | (q,ε)⊢* (q’,ε) }

• All states reachable via ε-moves from q

• Always includes q!

NFSM ⇒ DFSM

• Let M = (K, Σ, Δ, s, AN) be an NFSM.

• Construct DFSM M’ = (K’ , Σ, δD, eps(s), AD)
where

• K’ = P(K)

• δD(Q,c) = ∪{eps(p) | ∃q∈Q. (q, c, p) ∈ Δ} for Q ∈ P(K)

• AD = {R ⊆ K | R ∩ AN ̸≠ ∅ }, i.e., R has a final state

• Show L(M) = L(M’)

Example

Proof

• Lemma: Let w ∈ Σ*, p, q ∈ K, P ∈ K’. Then 
 (q,w) ⊢M* (p,ε) iff (eps(q), w) ⊢M’* (P,ε) & p ∈ P

• Assume lemma. Then  
w ∈ L(M) iff (s,w) ⊢M* (p,ε) for p ∈ AN  

iff (eps(s),w) ⊢M’* (P,ε) for p ∈ P, p ∈ AN  

iff (eps(s),w) ⊢M’* (P,ε) where P ∈ AD 

iff w ∈ L(M’)

• Now prove lemma by induction on |w|
iff by Lemma by def of AD

Base cases

• Show 
 (q,w) ⊢M* (p,ε) iff (eps(q), w) ⊢M’* (P,ε) & p ∈ P

• By induction on length of w.

• Let |w| = 0. Thus w = ε

• (⇒) Suppose (q, ε) ⊢M* (p,ε). Then p ∈ eps(q).

• Thus (eps(q), ε) ⊢M’* (eps(q),ε) & p ∈ eps(q). So let P = eps(q). ✔

• (⇐) Suppose (eps(q), ε) ⊢M’* (P,ε) & p ∈ P.

• Then P must be eps(q), and by def of eps,  
 p ∈ P implies (q, ε) ⊢M* (p,ε) ✔

Induction case

• Suppose true for v s.t. |v| = n. Let w = za for z s.t. |z| = n
(⇒) Suppose (q,za) ⊢M* (p,ε) where 
 (q,za) ⊢M* (p’,a) & (p’,a) ⊢M (p’’,ε) & (p’’, ε) ⊢M (p,ε)

Therefore (q,z) ⊢M* (p’, ε) & p ∈ eps(p’’) 
By induction ∃P s.t. (eps(q), z) ⊢M’* (P’,ε) & p’ ∈ P’ &  
 thus (eps(q), za) ⊢M’* (P’, a) & p’ ∈ P’ 
By def of M’, (P’, a) ⊢M’ (P, ε) for  
 P = ∪{eps(r) | ∃q∈P’. ((q, a), r) ∈ Δ} 
By above, ((p’,a), p’’) ∈ Δ & p ∈ eps(p’’). Therefore p ∈ P

Thus (eps(q), za) ⊢M’* (P,ε) for p ∈ P. ✔

Show (q,w) ⊢M* (p,ε) iff (eps(q), w) ⊢M’* (P,ε) & p ∈ P

Other direction left as
exercise!

Converting to Deterministic

• Algorithm exactly as have defined in proof.

• See algorithm in text.

Closure Revisited

• Union:

• Make sets of states disjoint, add new start w/ε moves to
starts of original. Final states union of original finals

• Concatenation:

• From each final state of first, add ε move to start of
second. Final states are only those of second.

Exercise

• If L is regular, show that L* is regular.

Minimizing FSM

• Useful for implementing in hardware

• Given regular L, is there a minimal FSM
accepting it?

• Is it unique?

• Can we construct it?

Equivalence relations

• ≈ is equivalence class iff reflexive, symmetric,
transitive.

• ≈ is right regular iff x ≈ y ⇒ xa ≈ ya for all a ∈ Σ

• Ex. Let M be FSM over Σ. Then define 
x ≈M y iff δM(s,x) = δM(s,y). ≈ is right-regular

• Equivalence class: [w] = {w’ ∈ Σ* | w ≈ w’}

• In example, equiv class is all w going to same state q.

• Then L(M) is union of equivalence classes.

Minimizing FSM

• Def: x, y are indistinguishable wrt L, x ≈L y iff  
for all z ∈ Σ*, either both xz, yz ∈ L or neither is

• Ex: if L = {w ∈ Σ∗ | w does not contain aab as a substring}
then a and baba indistinguishable, but a and ab not.

• ≈L is right regular equivalence relation

• States of new minimal machine will be
equivalence classes: [w] = {v ∈ Σ* | v ≈L w}

Example equiv classes

