Lecture 3: Finite State
Machines

CSCI 101
Spring, 2019
Kim Bruce

TAS:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen,

Alice Tun

Course web page: bttp.//www.cs pomona.edu/classes/csTor

Homework

e Now available on line
* Second problem has lots of parts

e Turn in single file to gradeScope

* Can use JFLAP to create automata
e See tutorial on-line - you must read it!
¢ Can test your FSM!

* Save as gif and then open and save as pdf (e.g., using
Preview on Mac)

o \includegraphics{myfile.pdf} to insert in LaTeX file.

Nondeterministic Finite State

Machine

e An NDFSM is a quintuple (K, Z, A, s, A)

K is a finite set of states

2 is a finite input alphabet

s € K is the start state

A C K is set of accepting (or final) states

A CK x Z U {e}) x K is a finite transition relation

* Can have multiple or no transitions

® e-moves as well

Example

NDSM Computations

* NDSM accepts a word w if at least one of its
computations accepts

e Always guesses right path if there is one!
o Why NDSM’s?
e Easier to design!

* But how to implement?




NFSM = DFSM

* Each DFSM is clearly NFSM

 Just make result of transition into relation
e Other direction uses sets of states
* Define eps(@) ={q' € K | (g,&)* (¢’,©) }

o All states reachable via e-moves from q

o Always includes q!

NFSM = DFSM

eLet M=(K, = A, s, AN) be an NFSM.

e Construct DFSM M’ = (K, Z, dp, eps(s), Ap)
where
e K =PK)
e dp(Q,0) = Uleps(p) 1 3qEQ. (g, ¢, p) € A} for Q € PK)
e Ap={RCKIRNAx#J},ie,Rhas a final state

* Show L(M) = L(M’)

Example

Proof

* Lemma: Letw€&€Z* p,q€E K, PEK’. Then
(q,w) Fum* (p,©) iff (gps(q), w) Fn* (Pe) & p EP

* Assume lemma. Then
w € LM) iff (s,w) —m* (p,e) for p € AN
iff (eps(),w) Fm* (Pe) forp EP, p E AN
iff (eps(s),w) —m* (Pe) where P € Ap
if we LOWD)

* Now prove lemma by induction on wl

iff by Lemma by def of Ap

Base cases

* Show
(q,w) Fum* (p,e) iff (gps(@), w) —m* (Pe) & p EP

* By induction on length of w.

* Letlwl=0. Thusw=¢
e (=) Suppose (q, &) F—m* (p,e). Then p € eps(g.
e Thus (eps(@), &) Fmr* (eps(@),e) & p E eps(@). So let P = eps(q). v/

¢ (<) Suppose (eps(q), &) —m* (Be) & p E P.

o Then P must be eps(q), and by def of ¢ps,
p € P implies (q, &) m* (p,e) ¢




Induction case
Show (q,w) —m* (p,e) iff (eps(@), w) —m* (Be) & p EP

* Suppose true for vs.t. vl=n. Let w=zaforzs.t.lzl=n

(=) Suppose (qza) Fu* (py&) where Other direction left as
(q,za) Fm* (p,@) & (p’,2) Fum (p7,8) & (p”, &) Fum (p,e) i
exercise!

Therefore (q,2) Fm* (p’, €) & p € eps(p”)
By induction 3P s.t. (eps(q), 2) Fm* (Pe) & P EP’ &
thus (eps(q), za) —m* (P, ) & p EP’
By def of M, (P, ) -mr (P, €) for
P = Uleps(o) 1 IgEP’. ((q, 2), 1) € A}
By above, ((p’,a), p”) € A & p € ¢ps(p”). Therefore p € P

Thus (eps(@), za) Fm* Pe) forpEP. v

Converting to Deterministic Closure Revisited

e Union:

e Make sets of states disjoint, add new start w/e moves to
o Algorlthm eX&Ctly as have defined in pr oof. starts of original. Final states union of original finals

e See algorithm in text. e Concatenation:

¢ From each final state of first, add € move to start of
second. Final states are only those of second.




Exercise

e If L is regular, show that L* is regular.

Minimizing FSM

e Useful for implementing in hardware

* Given regular L, is there a minimal FSM
accepting it?

e Is it unique?

e Can we construct it?

Equivalence relations
* =~ is equivalence class iff reflexive, symmetric,
transitive.
* ~jsright regulariff x~y=xa=yaforallaE X

e Ex. Let M be FSM over Z. Then define
x =M y iff dm(s,x) = dm(s,y). = is right-regular

* Equivalence class: {w} = {w’ € Z* | w = w'}

o In example, equiv class is all w going to same state q.

* Then L(M) is union of equivalence classes.

Minimizing FSM

* Def: x,y are indistinguishable wrt L, x =1 y iff
for all z € =¥, either both xz, yz € L or neither is

e Ex: if L = {w € Z* | w does not contain aab as a substring}
then a and baba indistinguishable, but a and ab not.

* ~, is right regular equivalence relation
e States of new minimal machine will be

equivalence classes: {w}={v & Z*|v = w}

Example equiv classes




