Lecture 3: Finite State Machines

CSCI ioı
Spring, 2019
Kim Bruce
TAs: Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen, Alice Tan

Course web page: http://wwwe.cs.pomona.edu/classes/csIoI

Nondeterministic Finite State Machine

- An NDFSM is a quintuple ($\mathrm{K}, \Sigma, \Delta, \mathrm{s}, \mathrm{A}$)
- K is a finite set of states
- Σ is a finite input alphabet
- $s \in K$ is the start state
- $\mathrm{A} \subseteq \mathrm{K}$ is set of accepting (or final) states
- $\Delta \subseteq \mathrm{K} \times(\Sigma \cup\{\varepsilon\}) \times \mathrm{K}$ is a finite transition relation
- Can have multiple or no transitions
- ε-moves as well

Example

Homework

- Now available on line
- Second problem has lots of parts
- Turn in single file to gradeScope
- Can use JFLAP to create automata
- See tutorial on-line - you must read it!
- Can test your FSM!
- Save as gif and then open and save as pdf (e.g., using Preview on Mac)
- to insert in LaTeX file.

NDSM Computations

- NDSM accepts a word w if at least one of its computations accepts
- Always guesses right path if there is one!
- Why NDSM's?
- Easier to design!
- But how to implement?

NFSM \approx DFSM

- Each DFSM is clearly NFSM
- Just make result of transition into relation
- Other direction uses sets of states
- Define $e p s(q)=\left\{q^{\prime} \in K \mid(q, \varepsilon) \vdash^{*}\left(q^{\prime}, \varepsilon\right)\right\}$
- All states reachable via ε-moves from q
- Always includes q !

NFSM \Rightarrow DFSM

- Let $\mathrm{M}=\left(\mathrm{K}, \Sigma, \Delta, \mathrm{s}, \mathrm{A}_{\mathrm{N}}\right)$ be an NFSM.
- Construct DFSM M' $=\left(\mathrm{K}^{\prime}, \Sigma, \delta_{\mathrm{D}}, e p s(\mathrm{~s}), \mathrm{A}_{\mathrm{D}}\right)$ where
- $\mathrm{K}^{\prime}=P(\mathrm{~K})$
- $\delta_{\mathrm{D}}(\mathrm{Q}, \mathrm{c})=\bigcup\{$ eps $(\mathrm{p}) \mid \exists \mathrm{q} \in \mathrm{Q}$. $(\mathrm{q}, \mathrm{c}, \mathrm{p}) \in \Delta\}$ for $\mathrm{Q} \in P(\mathrm{~K})$
- $A_{D}=\left\{R \subseteq K \mid R \cap A_{N} \neq \varnothing\right\}$, i.e., R has a final state
- Show $L(\mathrm{M})=L\left(\mathrm{M}^{\prime}\right)$

Proof

- Lemma: Let $w \in \Sigma^{*}, p, q \in K, P \in K^{\prime}$. Then $(\mathrm{q}, \mathrm{w}) \vdash_{\mathrm{M}^{*}}(\mathrm{p}, \varepsilon)$ iff $(e p s(\mathrm{q}), \mathrm{w}) \vdash_{\mathrm{M}}{ }^{*}(\mathrm{P}, \varepsilon) \& \mathrm{p} \in \mathrm{P}$
- Assume lemma. Then
$\mathrm{w} \in L(\mathrm{M})$ iff $(\mathrm{s}, \mathrm{w}) \vdash_{\mathrm{M}}{ }^{*}(\mathrm{p}, \varepsilon)$ for $\mathrm{p} \in \mathrm{A}_{\mathrm{N}}$ iff $(\mathrm{eps}(\mathrm{s}), \mathrm{w}) \vdash_{\mathrm{M}}{ }^{*}(\mathrm{P}, \varepsilon)$ for $\mathrm{p} \in \mathrm{P}, \mathrm{p} \in \mathrm{A}_{\mathrm{N}}$ iff $(\mathrm{eps}(\mathrm{s}), \mathrm{w}) \vdash_{\mathrm{M}}{ }^{*}(\mathrm{P}, \varepsilon)$ where $\mathrm{P} \in \mathrm{A}_{\mathrm{D}}$ iff $\mathrm{w} \in L\left(\mathrm{M}^{\prime}\right)$
- Now prove lemma by induction on $|w|$ iff by Lemma
by def of A_{D}

Base cases

- Show
$(\mathrm{q}, \mathrm{w}) \vdash \mathrm{m}^{*}(\mathrm{p}, \varepsilon)$ iff $(e p s(\mathrm{q}), \mathrm{w}) \vdash_{\mathrm{m}}{ }^{*}(\mathrm{P}, \varepsilon) \& \mathrm{p} \in \mathrm{P}$
- By induction on length of w.
- Let $|\mathrm{w}|=0$. Thus $\mathrm{w}=\varepsilon$
- (\Rightarrow) Suppose $(\mathrm{q}, \varepsilon) \vdash \mathrm{m}^{*}(\mathrm{p}, \mathrm{\varepsilon})$. Then $\mathrm{p} \in \operatorname{eps}(\mathrm{q})$.
- Thus $(e p s(\mathrm{q}), \varepsilon) \vdash_{\mathrm{M}^{*}}(e p s(\mathrm{q}), \varepsilon) \& \mathrm{p} \in e p s(\mathrm{q})$. So let $\mathrm{P}=e p s(\mathrm{q})$.
- (\leftarrow) Suppose $($ eps $(\mathrm{q}), \varepsilon) \vdash_{M^{*}}(\mathrm{P}, \varepsilon) \& \mathrm{p} \in P$.
- Then P must be eps (q), and by def of eps,
$\mathrm{p} \in \mathrm{P}$ implies $(\mathrm{q}, \varepsilon) \vdash_{\mathrm{m}}{ }^{*}(\mathrm{p}, \varepsilon) \quad \boldsymbol{\downarrow}$

Induction case

Show $(\mathrm{q}, \mathrm{w}) \vdash_{\mathrm{M}^{*}}(\mathrm{p}, \varepsilon)$ iff $(e p s(\mathrm{q}), \mathrm{w}) \vdash_{M^{*}}{ }^{*}(\mathrm{P}, \varepsilon) \& \mathrm{p} \in \mathrm{P}$

- Suppose true for v s.t. $|\mathrm{v}|=\mathrm{n}$. Let $\mathrm{w}=\mathrm{za}$ for z s.t. $|\mathrm{z}|=\mathrm{n}$
(\Rightarrow) Suppose $(q, z a) \vdash^{*}(p, \varepsilon)$ where
$(\mathrm{q}, \mathrm{za}) \vdash_{\mathrm{M}}{ }^{*}(\mathrm{p}, \mathrm{a}) \&(\mathrm{p}, \mathrm{a}) \vdash_{\mathrm{M}}(\mathrm{p} ", \varepsilon) \&(\mathrm{p} ", \varepsilon) \vdash_{M}(\mathrm{p}, \varepsilon)$
Therefore $(\mathrm{q}, \mathrm{z}) \vdash \mathrm{m}^{*}(\mathrm{p}, \varepsilon) \& \mathrm{p} \in e p s(\mathrm{p} ")$
By induction $\exists \mathrm{P}$ s.t. $(\mathrm{eps}(\mathrm{q}), \mathrm{z}) \vdash_{M^{*}}{ }^{*}\left(\mathrm{P}^{\prime}, \varepsilon\right) \& \mathrm{p}^{\prime} \in \mathrm{P}^{\prime} \&$
thus $(\operatorname{eps}(q), z a) \vdash_{M^{*}}\left(\mathrm{P}^{\prime}\right.$, a) \& $\mathrm{p}^{\prime} \in \mathrm{P}^{\prime}$
By def of $M^{\prime},\left(P^{\prime}, a\right) \vdash_{M^{\prime}}(P, \varepsilon)$ for
$\mathrm{P}=\cup\{e p s(\mathrm{r}) \mid \exists \mathrm{q} \in \mathrm{P},((\mathrm{q}, \mathrm{a}), \mathrm{r}) \in \Delta\}$
By above, $\left(\left(\mathrm{p}^{\prime}, \mathrm{a}\right), \mathrm{p} "\right) \in \Delta \& \mathrm{p} \in e p s(\mathrm{p} ")$. Therefore $\mathrm{p} \in \mathrm{P}$
Thus (eps $(\mathrm{q}), \mathrm{za}) \vdash_{\mathrm{M}^{*}}{ }^{*}(\mathrm{P}, \varepsilon)$ for $\mathrm{p} \in \mathrm{P}$.

Converting to Deterministic

- Algorithm exactly as have defined in proof.
- See algorithm in text.

Other direction left as exercise!

Closure Revisited

- Union:
- Make sets of states disjoint, add new start w / ε moves to starts of original. Final states union of original finals
- Concatenation:
- From each final state of first, add ε move to start of second. Final states are only those of second.

Exercise

- If L is regular, show that L^{*} is regular.

Minimizing FSM

- Useful for implementing in hardware
- Given regular L , is there a minimal FSM accepting it?
- Is it unique?
- Can we construct it?

Minimizing FSM

- Def: x, y are indistinguishable wrt $\mathrm{L}, \mathrm{x} \approx \mathrm{L} \mathrm{y}$ iff for all $z \in \Sigma^{*}$, either both $x z, y z \in L$ or neither is
- Ex: if $L=\{w \in \Sigma * \mid w$ does not contain aab as a substring $\}$ then a and baba indistinguishable, but a and ab not.
- $\approx \mathrm{L}$ is right regular equivalence relation
- States of new minimal machine will be equivalence classes: $[\mathrm{w}]=\left\{\mathrm{v} \in \Sigma^{*} \mid \mathrm{v} \approx \mathrm{L} w\right\}$
- In example, equiv class is all w going to same state q.
- Then $L(M)$ is union of equivalence classes.

