

Decision Problems

- Are these in D, SD/D, or not-SD
 - 21.1C: $\{ <M > | L(M) = \{a\} \}$
 - 21.1p: {<M> : there exists a string w such that |w| < |<M>| and that M accepts w}
 - 21.1q: {<M> : M does not accept any string that ends with o}

History

Finite Automata

- McCulloch and Pitts (1943) modeling nerves
- Kleene: regular sets, 1956
- Rabin & Scott: non-determinism, 1959
 - Awarded Turing award for paper
 - both students of Church

Context-free Languages

- Chomsky 1956: Modeling natural languages
- Backus-Naur Form: Describing Algol 60
- Oettinger 1961, Schuzenberger 1963: PDA's

Applications of CFL's

- Describing syntax of PL's
 - Can build parser (pda) directly from grammar
- Restrict to deterministic CFL's
 - LL(k), LR(k) limit amount of lookahead to k characters to decide which rule to apply.
- Compiler technology shows great success of theory!!
 - Formal specs of syntax and type-rules can be converted automatically to algorithms!

Context-Sensitive Languages

• Like type 0, but require if $\alpha \rightarrow \beta$ is a rule then $|\beta| \ge |\alpha|$

 $bB \rightarrow bb$

 $bC \rightarrow bc$

 $cC \rightarrow cc$

- Example:
 - $S \rightarrow aSBC$
 - $S \rightarrow aBC$
 - $CB \rightarrow BC$
 - $aB \rightarrow ab$
- Generates aⁿbⁿcⁿ

Context-Sensitive Languages

- Alternatively, restrict to productions of form
 - $\alpha A\beta \rightarrow \alpha \gamma \beta$
 - Rewrite non-terminals in particular contexts
- Accepted by linear-bounded automata
 - Limit tape to amount of space to write input.
- Interesting from theoretical point of view, but not many applications

Logic of Programs

- Floyd 1967 "Assigning meaning to programs"
 - Flow charts. Turing award 1978 (parsing, semantics, verification, algorithms)
- Hoare 1969 "An axiomatic basis for computer programming"
 - Hoare triples. Turing award 1980 (def & design programming languages)

Logic of Programs

- Remains hard!
 - Especially unsuccessful if write program first and proof later.
 - Systems (Coq) where write proof and extract program from proof.

Model Checking

- In early 1980's: Clarke and Emerson
- Remarkably successful, esp. w/hardware
- Take finite state machine and find which nodes satisfy various assertions.
 - Languages include temporal and fixed-point logics
 - State-space explosion still problem
 - Also useful in concurrency: safety and liveness

Final Exam

- Focus on material not on midterm:
 - Parsing, interpreters, type-checking
 - Lambda calculus, µ-recursive functions, etc.
 - FSM, PDA, TM, Grammars & Languages
 - Decidability & Semidecidability

Final Exam

- 24 hour take-home
- Open book, notes, course web pages, but no discussions w/anyone!
- Start as early as 9 a.m. Monday, must be in no later than 4:30 p.m. next Wednesday.
- 5 questions (multiple parts), emphasis on material not on midterm