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Entscheidungsproblem
• Does there exist an algorithm to decide, given 

a set of axioms, whether a given statement is a 
theorem?

• Church/Turing: No! FOL not decidable, but is semi-decidable

• Is it possible to axiomatize all of the 
mathematical structures of interest in such a 
way that every true statement becomes a 
theorem? 

• Allow the set of axioms to be infinite, but it must be decidable. 

• Gödel: No: Incompleteness theorem — fails to be semi-decidable!

Paradoxes?

• This statement is not true.

• This statement is not provable.

• Assume all provable statements are true

• Second is at heart of Gödel Incompleteness.

Definitions

• Let T be a decidable set of statements and let φ 
be a formula of first-order logic.

• T ⊢φ means there is a proof of φ using statements of T 
as axioms

• T ⊨ φ means for every model in which all statements of 
T are true, then φ must be true as well.

• Example: Let T be axioms of number theory, 
and φ be ∀x. ∃y. y > x



Gödel Incompleteness

• T is consistent iff all provable statements are 
true.  (T ⊢φ ⇒ T ⊨φ).

• Equivalently, no false statement has a valid proof

• T is complete iff every true statement has a 
valid proof.  (T ⊨φ ⇒ T ⊢φ).

• Gödel Completeness:   
     In predicate logic, if T ⊨ φ, then T ⊢ φ.

Incompleteness Theorems

• Different notion of completeness -- w.r.t. model

• Gödel Incompleteness 1:  For every 
“interesting” system there are true statements 
that cannot be proved.

• Gödel Incompleteness 2:  For every 
“interesting” system, the consistency of that 
system cannot be proved within itself.

Interesting systems include number theory and set theory

• Axioms:

• PA0. ∀x ¬ (0 = s(x))

• PA1. ∀x ∀y (s(x) = s(y) → x = y)

• PA2. ∀x (x + 0 = x)

• PA3. ∀x∀y(x+s(y)=s(x+y))

• PA4. ∀x(x·0=0)

• PA5. ∀x∀y(x·s(y)=(x·y)+x)

• PA6. φ[0/x] ∧ ∀x (φ → φ[s(x)/x]) → ∀x φ

Induction
schema:
∞ number 

of rules

Completeness & Consistency

• Every provable statement of PA is true of the 
natural numbers.

• What about completeness?

• Is PA enough to prove all true statements in N?

• Thm:  The set of statements provable from PA 
is semidecidable.

• Already showed predicate logic not decidable. 



Incompleteness

• Let Th(N) = set of all sentences in language of 
PA that are true in N

• Lemma:   Th(N) is not semi-decidable.  Thus  
{φ : PA ⊢ φ} ⊂ Th(N), but not equal.

• Proof:  Show Th(N) semi-decidable implies 
¬HTM is semi-decidable.

• Given <M,w>, construct γ s.t.  
              <M,w> ∈ ¬HTM iff γ ∈ Th(N)

Constructing γ

• Can encode TM computations as integers:

• Give characters an integer code and code sequence as 
2c1 3c2 5c3 7c4 11c5 13c6 17c7 ...

• Can write formula ValidCompM,w(y) that says y 
represents a valid computation history of M on input w.

• Define γ = ¬∃y ValidCompM,x(y)   says M,w not halt!

• As desired, get <M,w> ∈ ¬HTM iff γ ∈ Th(N)

• Thus Th(N) not semidecidable, so {φ : PA ⊢ φ} ⊂ Th(N) 
and hence PA incomplete -- can’t prove all φ true in N.

Gödel Incompleteness

• Gödel 1:  Let T be a decidable set of axioms 
true of the natural numbers & that implies the 
axioms of Peano Arithmetic.  Then there is a 
sentence γ which is true of N but is not 
provable in T.

• Proof only depended on ability to encode computation.  

• Set of statements provable from a decidable T is semi-
decidable, but Th(N) is not.

• T consistent ⇒ Provable(T) = {φ | T ⊢ φ} ⊆ Th(N).  


