Lecture 26: Gödel Incompleteness

CSCI 101 Spring, 2019

Kim Bruce

Entscheidungsproblem

- Does there exist an algorithm to decide, given a set of axioms, whether a given statement is a theorem?
 - Church/Turing: No! FOL not decidable, but is semi-decidable
- Is it possible to axiomatize all of the mathematical structures of interest in such a way that every true statement becomes a theorem?
 - Allow the set of axioms to be infinite, but it must be decidable.
 - Gödel: No: Incompleteness theorem fails to be semi-decidable!

Paradoxes?

- This statement is not true.
- This statement is not provable.
 - Assume all provable statements are true
- Second is at heart of Gödel Incompleteness.

Definitions

- Let T be a decidable set of statements and let ϕ be a formula of first-order logic.
 - $T \vdash \varphi$ means there is a proof of φ using statements of T as axioms
 - T ⊨ φ means for every model in which all statements of T are true, then φ must be true as well.
- Example: Let T be axioms of number theory, and φ be ∀x. ∃y. y > x

Gödel Incompleteness

- T is consistent iff all provable statements are true. (T⊢φ ⇒ T⊨φ).
 - Equivalently, no false statement has a valid proof
- T is complete iff every true statement has a valid proof. $(T \vDash \phi \Rightarrow T \vdash \phi)$.
- Gödel Completeness: In predicate logic, if T ⊨ φ, then T ⊢ φ.

Incompleteness Theorems

- Different notion of completeness -- w.r.t. model
- Gödel Incompleteness 1: For every "interesting" system there are true statements that cannot be proved.
- Gödel Incompleteness 2: For every "interesting" system, the consistency of that system cannot be proved within itself.

Interesting systems include number theory and set theory

• Axioms:

- PAo. $\forall x \neg (o = s(x))$
- PA1. $\forall x \ \forall y \ (s(x) = s(y) \rightarrow x = y)$
- PA2. ∀x (x + 0 = x)
- PA₃. $\forall x \forall y (x+s(y)=s(x+y))$
- PA₄. ∀x(x·0=0)
- PA5. $\forall x \forall y (x \cdot s(y) = (x \cdot y) + x)$
- PA6. $\phi[o/x] \land \forall x (\phi \rightarrow \phi[s(x)/x]) \rightarrow \forall x \phi$

Induction schema: ∞ number of rules

Completeness & Consistency

- Every provable statement of PA is true of the natural numbers.
- What about completeness?
 - Is PA enough to prove all true statements in N?
- Thm: The set of statements provable from PA is semidecidable.
- Already showed predicate logic not decidable.

Incompleteness

- Let Th(N) = set of all sentences in language of PA that are true in N
- Lemma: Th(N) is not semi-decidable. Thus $\{\phi : PA \vdash \phi\} \subset$ Th(N), but not equal.
- Proof: Show Th(N) semi-decidable implies -H_{TM} is semi-decidable.
 - Given <M,w>, construct γ s.t. $<\!\!M,\!w\!>\!\in\neg H_{\rm TM} \text{ iff } \gamma\!\in\!Th(N)$

Constructing γ

- Can encode TM computations as integers:
 - Give characters an integer code and code sequence as $2^{c1}\,3^{c2}\,5^{c3}\,7^{c4}\,11^{c5}\,13^{c6}\,17^{c7}\ldots$
 - Can write formula ValidComp $_{M,w}(y)$ that says y represents a valid computation history of M on input w.
 - Define $\gamma = \neg \exists y \text{ ValidComp}_{M,x}(y) \text{ says } M, w \text{ not balt!}$
 - As desired, get <M,w> $\in \neg H_{\rm TM}$ iff $\gamma \in Th(N)$
 - Thus Th(N) not semidecidable, so {φ : PA ⊢ φ} ⊂ Th(N) and hence PA incomplete -- can't prove all φ true in N.

Gödel Incompleteness

- Gödel 1: Let T be a decidable set of axioms true of the natural numbers & that implies the axioms of Peano Arithmetic. Then there is a sentence γ which is true of N but is not provable in T.
 - Proof only depended on ability to encode computation.
 - Set of statements provable from a decidable T is semidecidable, but Th(N) is not.
 - T consistent \Rightarrow Provable(T) = { $\phi \mid T \vdash \phi$ } \subseteq Th(N).