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Unrestricted Grammars

• An unrestricted, or type 0 grammar  G is a 
quadruple (V, Σ, R, S), where:

• V is an alphabet,

•  Σ (the set of terminals) is a subset of V,

• R (the set of rules) is a finite subset of (V+ × V*),

• S (the start symbol) is an element of V - Σ.

• The language generated by G is: 
         {w ∈ Σ* : S ⇒G* w}.

Example 1:

• AnBnCn = {anbncn, n ≥ 0}

• S → aBSc  
S → ε 
Ba → aB  
Bc → bc  
Bb → bb

• Proof:

• Gives only strings in AnBnCn :

• All strings in AnBnCn are generated:

Example 2

• {w ∈ {a, b, c}* : #a(w) = #b(w) = #c(w)}

• S → ABCS 
S → ε 
AB → BA 
BC → CB 
AC → CA  
BA → AB 
CA → AC  
CB → BC 
A → a 
B → b 
C → c



Example 3

• WW = {ww : w ∈ {a, b}*}

• Idea:  Generate wCwR# and then reverse last part

WW = {ww : w ∈ {a, b}*}
• S → T# /* Generate the wall exactly once. 

T → aTa /* Generate wCwR. 
T → bTb ʺ  
T → C ʺ  
C → CP /* Generate a pusher P 
Paa→ aPa /* Push one character to the right  

    to get ready to jump. 
Pab → bPa ʺ  
Pba → aPb ʺ  
Pbb → bPb ʺ  
Pa# → #a /* Hop a character over the wall. 
Pb# → #b ʺ  
C# → ε

Computability

• Theorem: A language is generated by an 
unrestricted grammar if and only if it is in SD.

• Proof: 

• (Grammar ⇒ TM): by construction of an 
NDTM.

• (TM ⇒ grammar): by construction of a 
grammar that mimics the behavior of a semi-
deciding TM.

Proof of Equivalence

• (Grammar ⇒ TM): by construction of a two-
tape NDTM.

• Suppose S ⇒* w.  
w is on tape 1.  Start w/S on tape 2.

• Tape 2 simulates derivation.

• Non-deterministically choose production to apply to 
contents of tape 2.  Rewrite string as appropriate.

• After each step see if matches input.  If yes, halt.

• Semi-decides L(G).



Proof of Equivalence

• (TM ⇒ Grammar): Construct grammar G to 
simulate TM M.

• Phase 1 generates a candidate string for acceptance. 
Phase 2 will then simulate the TM computation on the 
string. 
Phase 3 will clean up the tape, so tape only contains 
original candidate string.

• Problem:  Original string got replaced during simulation!

• Solution:  Duplicate it on odd cells of tape and only 
compute on the evens, preserving odds.

Proof of Equivalence

• (TM ⇒ Grammar): Construct grammar G to 
simulate TM M.

• Phase 1:  Generate a candidate string for acceptance.

• Generate a string of form  
# ☐☐ q000 a1 a1 a2 a2 a3 a3 ☐☐ # 
representing input a1a2a3 and q000 is encoding of start state

• Phase 2:  If δ(p,a) = (q,b,→) add rule:

• p’ z a → z b q‘   where p’, q’ are codes of states p,q

• If δ(p,a) = (q,b,←) add    x y p’ z a → q’ x y z b

Note duplicates!!

Proof of Equivalence

• (TM ⇒ Grammar): Construct grammar G to 
simulate TM M.

• Phase 3:  If get to accept state A, clean up:

• x A → A x      for x ≠ #,  move A to left edge of input

• # A x y → x #A  sweep through gathering odd -- erasing even

• # A # → ε     leaves original string as final string

Other formalisms

• Partial recursive functions:

• projection, constant, successor, closed under 
composition, primitive recursion, and minimization

• To show equivalence with TM’s must encode 
configurations, configuration histories, etc. as numbers.

• Lambda calculus

• RAM machines



Undecidability

• All undecidability results carry over as could 
use to solve corresponding TM problems using 
simulations.

Self-Reproducing Program

• Can you write a program in your favorite 
programming language that prints out a copy of 
itself?

• Try it!

Virus Program
• virus() = 

    1. For each address in address book do:  
        1.1. Write a copy of myself. 
        1.2. Mail it to the address. 
    2. Do something malicious like change one  
        bit in every file on the machine.  
    3. Halt.

• Can we implement step 1.1?

• Print two copies of the following with the second in 
quotes: “Print two copies of the following with the 
second in quotes:”

Fixed Points
• Consider f(k) = k                    if k ≤ 1 

                       = f(k-1) + f(k-2)  otherwise

• Function f defined in terms of itself.

• Think of as equation to be solved.

• f = fun(k). if k≤1 then k else f(k-1)+f(k-2) 

• Write right side as function of g:

• F(g) = fun(k). if k≤1 then k else g(k-1)+g(k-2)

• Looking for f s.t. f = F(f)         f is fixed pt for F



Recursion Theorem

• Rough versions:

• First Thm:  If F is computable then F has a computable 
fixed point.

• Second Thm:  We can compute the program for a fixed 
point of F from a program for F.

• True for any formalism giving all computable 
fcns.

• In lambda calculus, Y = λf.(λx.f(xx))(λx.f(xx)) gives fixed 
points.  I.e. for all f, if xo =Yf then f(xo) = xo

Harder for Turing machines!


