

CSCI 101 Spring, 2019

Kim Bruce

Unrestricted Grammars

- An unrestricted, or type 0 grammar G is a quadruple (V, Σ, R, S), where:
 - V is an alphabet,
 - Σ (the set of terminals) is a subset of V,
 - R (the set of rules) is a finite subset of $(V^+ \times V^*)$,
 - S (the start symbol) is an element of V Σ .
- The language generated by G is: $\{w \in \Sigma^* : S \Rightarrow_G^* w\}.$

Example 1:

- $A^n B^n C^n = \{a^n b^n c^n, n \ge 0\}$
 - $S \rightarrow aBSc$
 - $S \rightarrow \varepsilon$ Ba $\rightarrow aB$
 - $Ba \rightarrow aB$ Bc $\rightarrow bc$
 - $Bb \rightarrow bb$
- Proof:
 - Gives only strings in AⁿBⁿCⁿ :
 - All strings in AⁿBⁿCⁿ are generated:

Example 2

• {w \in {a, b, c}* : $#_a(w) = #_b(w) = #_c(w)$ }

• $S \rightarrow ABCS$ $S \rightarrow \varepsilon$ $AB \rightarrow BA$ $BC \rightarrow CB$ $AC \rightarrow CA$ $BA \rightarrow AB$ $CA \rightarrow AC$ $CB \rightarrow BC$ $A \rightarrow a$

- $B \rightarrow b$
- $C \rightarrow c$

Example 3

- WW = {ww : $w \in \{a, b\}^*$ }
 - Idea: Generate $wCw^R #$ and then reverse last part

WW = {ww : $w \in \{a, b\}^*$ }

• $S \rightarrow T #$ /* Generate the wall exactly once. /* Generate wCwR. $T \rightarrow aTa$ $T \rightarrow bTb$ $T \rightarrow C$ $C \rightarrow CP$ /* Generate a pusher P /* Push one character to the right Paa→ aPa to get ready to jump. Pab → bPa Pba → aPb $Pbb \rightarrow bPb$ $Pa \# \rightarrow \#a$ /* Hop a character over the wall. $Pb# \rightarrow #b$ $C \# \rightarrow \epsilon$

Computability

- Theorem: A language is generated by an unrestricted grammar if and only if it is in SD.
- Proof:
- (Grammar ⇒ TM): by construction of an NDTM.
- (TM ⇒ grammar): by construction of a grammar that mimics the behavior of a semi-deciding TM.

Proof of Equivalence

- (Grammar ⇒ TM): by construction of a twotape NDTM.
 - Suppose S ⇒* w. w is on tape 1. Start w/S on tape 2.
 - Tape 2 simulates derivation.
 - Non-deterministically choose production to apply to contents of tape 2. Rewrite string as appropriate.
 - After each step see if matches input. If yes, halt.
 - Semi-decides L(G).

Proof of Equivalence

- (TM ⇒ Grammar): Construct grammar G to simulate TM M.
 - Phase 1 generates a candidate string for acceptance.
 Phase 2 will then simulate the TM computation on the string.
 Phase 3 will clean up the tape, so tape only contains
 - original candidate string.
 - Problem: Original string got replaced during simulation!
 - Solution: Duplicate it on odd cells of tape and only compute on the evens, preserving odds.

Proof of Equivalence

- (TM ⇒ Grammar): Construct grammar G to simulate TM M.
 - Phase 1: Generate a candidate string for acceptance.
 - Generate a string of form Note duplicates!!
 # □□ q000 at at a2 a2 a3 a3 □□ #
 representing input a₁a₂a₃ and q000 is encoding of start state
 - Phase 2: If $\delta(p,a) = (q,b,\rightarrow)$ add rule:
 - $p' z a \rightarrow z b q'$ where p', q' are codes of states p,q
 - If $\delta(p,a) = (q,b,\leftarrow) add x y p'z a \rightarrow q'x y z b$

Proof of Equivalence

- (TM ⇒ Grammar): Construct grammar G to simulate TM M.
 - Phase 3: If get to accept state A, clean up:
 - $x A \rightarrow A x$ for $x \neq #$, move A to left edge of input
 - $\# A x y \rightarrow x \# A$ sweep through gathering odd -- erasing even
 - $\# A \# \rightarrow \epsilon$ leaves original string as final string

Other formalisms

- Partial recursive functions:
 - projection, constant, successor, closed under composition, primitive recursion, and minimization
 - To show equivalence with TM's must encode configurations, configuration histories, etc. as numbers.
- Lambda calculus
- RAM machines

Undecidability

• All undecidability results carry over as could use to solve corresponding TM problems using simulations.

Self-Reproducing Program

- Can you write a program in your favorite programming language that prints out a copy of itself?
 - Try it!

Virus Program

- virus() =
 - I. For each address in address book do:
 - 1.1. Write a copy of myself.
 - 1.2. Mail it to the address.
 - 2. Do something malicious like change one bit in every file on the machine.
 - 3. Halt.
- Can we implement step 1.1?
 - Print two copies of the following with the second in quotes: "Print two copies of the following with the second in quotes:"

Fixed Points

- Consider f(k) = k if $k \le 1$ = f(k-1) + f(k-2) otherwise
- Function f defined in terms of itself.
- Think of as equation to be solved.
 - f = fun(k). if $k \le 1$ then k else f(k-1)+f(k-2)
- Write right side as function of g:
 - F(g) = fun(k). if $k \le 1$ then k else g(k-1)+g(k-2)
- Looking for f s.t. f = F(f) f is fixed pt for F

Recursion Theorem

- Rough versions:
 - First Thm: If F is computable then F has a computable fixed point.
 - Second Thm: We can compute the program for a fixed point of F from a program for F.
- True for any formalism giving all computable fcns.
 - In lambda calculus, Y = $\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ gives fixed points. I.e. for all f, if x_0 = Yf then $f(x_0) = x_0$

Harder for Turing machines!