Decision Problems for
Lecture 25: Language Regular Languages

Hierarchies:
. . . e For FSMs/Regular languages, most things
Decidable & Semi-Decidable decidable:
CSCI 101 e Apsm = {(M,w) | M is an FSM and w € L(M)}
Spring, 2019 * Ersm =M | M is a FSM and LOM)=0}
e TOTALpsm =M | M is a FSM and L(M)=>*}
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e EQUALgpsm =(<M,N> | M,N are FSMs and L(M)=L(N)}

Decision Problems for CFGs TOTALcrg is the key!

e Assume TOTALcrg is undecidable and show others

e Not for PDAs/CFGs: undecidable.

o Acrg ={(Gw) | Gisa CFG and w € L(G)}
e EQUALcrG =l< G, G’ > | G, G’ are CFGs & L(G)=L(G)}

* Let Groc be a fixed grammar s.t. L(Groo) = =¥

e Ecrg =lG | G is a CFG and L(G)=0}

e Finitecr = {G | G is a CFG and L(G) is finite}
e Suppose Oracle decides EQUALcrc

TOTALcrc =G | G is a CFG and L(G)==*

To decide if G total, ask oracle about <G, Gror>.

EQUALcrG = G’ > |G, G are CFGs and L(G)=L(G)}

If yes, then G is total. If no, then not.
L4 e
ot Decidable! * By contradiction, EQUALcrc is undecidable




Minimizing PDA’s

e MINppa = {<M;, M,>: M, is a minimization of M}
is undecidable.

* Proof: Suppose Oracle to solve MINppa.
Let P,be PDA with one state that accepts everything (never
push anything on stack).

o Given cfg G, construct equivalent PDA P s.t. L(P) = L(G).

e Submit <PP.> to Oracle and get answer to L(P) = L(G) = =*

Other Undecidable

¢ Is L(G) inherently ambiguous?
e Is L(G) NL(G) = &?

* f L(G) CLG)?

* Is complement of L(G) a cfl?

* Is L(G) regular?

Totalcrg is Undecidable

e Recall: Configuration of TM M is a 4 tuple:
* M’s current state
* nonblank portion of the tape before the read head,
o the character under the read head,

o the nonblank portion of the tape after the read head

Computation

* A computation of M is a sequence of
configurations:
Co, C,, ..., Cy for some n 2 o such that:

o G, is the initial configuration of M,
o C,is a halting configuration of M, and:
e Cotm Cikbm Cobme by Ca

* Computation history is sequence of
configurations.




Proof

® Theorem: Totalcrg is undecidable
e Proof: Reduction via halting

o Given M,w, build grammar G generating language L

composed of all strings in 3* except any representing a
(halting) computation history of M on w.

e Suppose Oracle solves Totalcrg. Run on G.
e If says yes, then M doesn’t halt on w
e If says no, then exist halting computation from w.

¢ Contradiction!

Recognizing Computation
Histories

e Build PDA rather than CFG and then convert.

* For s to be computation history of M on w:
e It must be a syntactically valid computation history.

e C, must correspond to M being in its start state, with w
on the tape, and with the read head to the left of w.

e The last configuration must be a halting configuration.

e Each configuration after Co must be derivable from the
previous one according to the rules in dm.

Invalid Computation
Histories

 Recognizing valid computations hard!
e Can get as intersection of two cfls!
* Invalid easier! PDA can guess one of the
following fails (use non-determinism!)
e Invalid syntax for configuration sequence.
e C, not rep. opening config (bad state or input)
e Last configuration not halting

* Successor config not follow from previous according to
transition function.

Recognizing Invalid
Computations

e Last check can be done easily if have extra tape
on TM (or extra read head)

e To check last point (transitions incorrect) with
pda, must save a configuration on stack in
order to check next.

* But elements popped off stack in opposite
order added (LIFO). How to compare??




Boustrophedon??

* Solve by writing every other configuration
backwards, so can compare via stack.

e This text is written
° ot yaw yzarc siht ni

e show Boustrophedon style.

* Assume computation history written in
Boustrophedon style

e Exists iff regular history exists!
gu y

Invalid Computation History

* If guessing particular step of computation is
wrong in Co CR C, .

e Keep track of which direction going
 Push C; (possibly reversed) onto stack

e Compare C;., to make sure that there is an error
¢ In copying unchanged portion of configuration or

o In changing part reflecting transition.

¢ Hence whether L(G) = * is undecidable.

Unrestricted Grammars

Unrestricted Grammars

e An unrestricted, or type o grammar G is a
quadruple (V, Z, R, S), where:

* Vis an alphabet,
e 3 (the set of terminals) is a subset of V,
o R (the set of rules) is a finite subset of (V+ x V¥,

e S (the start symbol) is an element of V - Z.

* The language generated by G is:
fwe>*: S =¢*w.




Example 1:

e AnBnCn = {anbncn, n > o}

e S—aBSc
S—e¢
Ba—aB
Bc — be
Bb — bb

® Proof:
o Gives only strings in A»BoCn :

o All strings in A"BnCn are generated:

Example 2

o twEfa, b, c}* : #uw) = #rW) = # W)}

e S— ABCS
S—e¢
AB — BA
BC - CB
AC — CA
BA — AB
CA— AC
CB — BC
A—a
B—b
C—c

Example 3

e WW = {ww:wE {a, b}*}

o Idea: Generate wCwR# and then reverse last part

WW ={ww : w E {a, b}*}

o S—T#  /* Generate the wall exactly once.
T—aTa  /* Generate wCwR.
T —bTb "
T—C !
C—CP  /*Generate a pusher P

Paa— aPa * Push one character to the right

to get ready to jump.
Pab — bPa !
Pba — aPb !
Pbb — bPb !
Pa# — #a * Hop a character over the wall.
Pb# — #b g
C# — ¢




Computability

* Theorem: A language is generated by an
unrestricted grammar if and only if it is in SD.

¢ Proof:

¢ (Grammar = TM): by construction of an
NDTM.

e (TM = grammar): by construction of a
grammar that mimics the behavior of a semi-

deciding TM.

Proof of Equivalence

¢ (Grammar = TM): by construction of a two-
tape NDTM.

o Suppose S =*w.
w is on tape 1. Start w/S on tape 2.

e Tape 2 simulates derivation.

e Non-deterministically choose production to apply to
contents of tape 2. Rewrite string as appropriate.

e After each step see if matches input. If yes, halt.

¢ Semi-decides L(G).

Proof of Equivalence

e (TM = Grammar): Construct grammar G to
simulate TM M.

e Phase 1 generates a candidate string for acceptance.
Phase 2 will then simulate the TM computation on the
string.

Phase 3 will clean up the tape, so tape only contains
original candidate string.

o Problem: Original string got replaced during simulation!

e Solution: Duplicate it on odd cells of tape and only
compute on the evens, preserving odds.

Proof of Equivalence

* (M = Grammar): Construct grammar G to
simulate TM M.

e Phase 1: Generate a candidate string for acceptance.

¢ Generate a string of form

# 00 qooo ar ar az a2 a3 a3 OO #
representing input a;a,a; and qooo is encoding of start state

e Phase 2: If 8(p,a) = (q,b,—) add rule:

o pza—>zbq wherep’,q are codes of states pq

o Ifo(pa)=(qb<)add xyp'za—qg'xyzb




