Lecture 25: Language Hierarchies: Decidable \& Semi-Decidable

CSCI ioi
Spring, 2019
Kim Bruce

Decision Problems for Regular Languages

- For FSMs/Regular languages, most things decidable:
- $\mathrm{A}_{\mathrm{FSM}}=\{\langle\mathrm{M}, \mathrm{w}\rangle \mid \mathrm{M}$ is an FSM and $\mathrm{w} \in \mathrm{L}(\mathrm{M})\}$
- $\mathrm{E}_{\mathrm{FSM}}=\{\mathrm{M} \mid \mathrm{M}$ is a FSM and $\mathrm{L}(\mathrm{M})=\varnothing\}$
- TOTAL $_{\text {FSM }}=\left\{\mathrm{M} \mid \mathrm{M}\right.$ is a FSM and $\left.\mathrm{L}(\mathrm{M})=\Sigma^{*}\right\}$
- EQUAL $_{F S M}=\{<M, N>\mid M, N$ are $F S M s$ and $L(M)=L(N)\}$

TOTAL $_{\text {CFG }}$ is the key!

- Assume TOTAL ${ }_{\text {CFg }}$ is undecidable and show others undecidable.
- $E_{\text {QUAL }}^{C F G}=\left\{<\mathrm{G}, \mathrm{G}^{\prime}>\mid \mathrm{G}, \mathrm{G}^{\prime}\right.$ are CFGs \& L(G)=L(G')\}
- Let $\mathrm{G}_{\mathrm{Tot}}$ be a fixed grammar s.t. $\mathrm{L}\left(\mathrm{G}_{\mathrm{Tot}}\right)=\Sigma^{*}$
- Suppose Oracle decides EQUAL ${ }_{\text {CFG }}$
- To decide if G total, ask oracle about $<\mathrm{G}, \mathrm{G}_{\mathrm{Tot}}>$.
- If yes, then G is total. If no, then not.
- By contradiction, $\mathrm{EQUAL}_{\mathrm{CFG}}$ is undecidable

Minimizing PDA's

- MIN $_{\text {PDA }}=\left\{<M_{1}, M_{2}>: M_{2}\right.$ is a minimization of $\left.M_{1}\right\}$ is undecidable.
- Proof: Suppose Oracle to solve MIN ${ }_{\text {PDA }}$. Let P_{a} be PDA with one state that accepts everything (never push anything on stack).
- Given cfg G, construct equivalent PDA P s.t. $\mathrm{L}(\mathrm{P})=\mathrm{L}(\mathrm{G})$.
- Submit $<\mathrm{P}, \mathrm{P}_{\mathrm{a}}>$ to Oracle and get answer to $\mathrm{L}(\mathrm{P})=\mathrm{L}(\mathrm{G})=\Sigma^{*}$

Total ${ }_{\text {CFG }}$ is Undecidable

- Recall: Configuration of TM M is a 4 tuple:
- M's current state
- nonblank portion of the tape before the read head,
- the character under the read head,
- the nonblank portion of the tape after the read head

Other Undecidable

- Is L(G) inherently ambiguous?
- Is $L(G) \cap L\left(G^{\prime}\right)=\varnothing$?
- If $\mathrm{L}(\mathrm{G}) \subseteq \mathrm{L}\left(\mathrm{G}^{\prime}\right)$?
- Is complement of $\mathrm{L}(\mathrm{G})$ a cfl?
- Is L(G) regular?

Computation

- A computation of M is a sequence of configurations:
$C_{0}, C_{I}, \ldots, C_{n}$ for some $\mathrm{n} \geq 0$ such that:
- C_{o} is the initial configuration of M,
- C_{n} is a halting configuration of M, and:
- $\mathrm{C}_{0} \vdash_{\mathrm{M}} \mathrm{C}_{\mathrm{I}} \vdash_{\mathrm{M}} \mathrm{C}_{2} \vdash_{\mathrm{M}} \ldots \vdash_{\mathrm{M}} \mathrm{C}_{\mathrm{n}}$.
- Computation history is sequence of configurations.

Proof

- Theorem: Total ${ }_{\text {CFG }}$ is undecidable
- Proof: Reduction via halting
- Given M,w, build grammar G generating language L composed of all strings in Σ^{*} except any representing a (halting) computation history of M on w .
- Suppose Oracle solves TotalcFg. Run on G.
- If says yes, then M doesn't halt on w
- If says no, then exist halting computation from w .
- Contradiction!

Recognizing Computation Histories

- Build PDA rather than CFG and then convert.
- For s to be computation history of M on w:
- It must be a syntactically valid computation history.
- C_{o} must correspond to M being in its start state, with \mathbf{w} on the tape, and with the read head to the left of w.
- The last configuration must be a halting configuration.
- Each configuration after Co must be derivable from the previous one according to the rules in δ_{M}.

Invalid Computation Histories

- Recognizing valid computations hard!
- Can get as intersection of two cffs!
- Invalid easier! PDA can guess one of the following fails (use non-determinism!)
- Invalid syntax for configuration sequence.
- C_{o} not rep. opening config (bad state or input)
- Last configuration not halting
- Successor config not follow from previous according to transition function

Recognizing Invalid Computations

- Last check can be done easily if have extra tape on TM (or extra read head)
- To check last point (transitions incorrect) with pda, must save a configuration on stack in order to check next.
- But elements popped off stack in opposite order added (LIFO). How to compare??

Boustrophedon??

- Solve by writing every other configuration backwards, so can compare via stack.
- This text is written
- ot yaw yzarc siht ni
- show Boustrophedon style.
- Assume computation history written in Boustrophedon style
- Exists iff regular history exists!

Invalid Computation History

- If guessing particular step of computation is wrong in $\mathrm{C}_{0} \mathrm{C}_{1}{ }^{\mathrm{R}} \mathrm{C}_{2}$...
- Keep track of which direction going
- Push C_{i} (possibly reversed) onto stack
- Compare $\mathrm{C}_{\mathrm{i}+\mathrm{I}}$ to make sure that there is an error
- In copying unchanged portion of configuration or
- In changing part reflecting transition.
- Hence whether $\mathrm{L}(\mathrm{G})=\Sigma^{*}$ is undecidable.

Unrestricted Grammars

- An unrestricted, or type o grammar G is a quadruple (V, $\Sigma, \mathrm{R}, \mathrm{S}$), where:
- V is an alphabet,
- Σ (the set of terminals) is a subset of V ,
- R (the set of rules) is a finite subset of $\left(\mathrm{V}^{+} \times \mathrm{V}^{*}\right)$,
- S (the start symbol) is an element of $\mathrm{V}-\Sigma$.
- The language generated by G is:

$$
\left\{\mathrm{w} \in \Sigma^{*}: S \Rightarrow \mathrm{G}^{*} \mathrm{w}\right\}
$$

Example i:

- $\mathrm{A}^{\mathrm{n}} \mathrm{Bn}^{n} \mathrm{C}^{\mathrm{n}}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}}, \mathrm{n} \geq 0\right\}$
- $\mathrm{S} \rightarrow \mathrm{aBSc}$
$\mathrm{S} \rightarrow \varepsilon$
$\mathrm{Ba} \rightarrow \mathrm{aB}$
$\mathrm{Bc} \rightarrow \mathrm{bc}$
$\mathrm{Bb} \rightarrow \mathrm{bb}$
- Proof:
- Gives only strings in $\mathrm{An}^{\mathrm{nn}} \mathrm{C}^{\mathrm{n}}$
- All strings in $\mathrm{A}^{\mathrm{n} \mathrm{B}^{n} \mathrm{C}^{\mathrm{n}}}$ are generated:

Example 3

- $W W=\left\{w w: w \in\{a, b\}^{*}\right\}$
- Idea: Generate w $w w^{R} \#$ and then reverse last part

Example 2

- $\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}: \#_{\mathrm{a}}(\mathrm{w})=\#_{\mathrm{b}}(\mathrm{w})=\# \mathrm{c}(\mathrm{w})\right\}$
- $\mathrm{S} \rightarrow \mathrm{ABCS}$
$S \rightarrow \varepsilon$
$\mathrm{AB} \rightarrow \mathrm{BA}$
$\mathrm{BC} \rightarrow \mathrm{CB}$
$\mathrm{AC} \rightarrow \mathrm{CA}$
$\mathrm{BA} \rightarrow \mathrm{AB}$
$\mathrm{CA} \rightarrow \mathrm{AC}$
$\mathrm{CB} \rightarrow \mathrm{BC}$
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{c}$

$W W=\left\{w w: w \in\{a, b\}^{*}\right\}$

- $\mathrm{S} \rightarrow \mathrm{T} \# \quad / *$ Generate the wall exactly once.
$\mathrm{T} \rightarrow \mathrm{aTa} \quad /^{*}$ Generate $\mathrm{wCw}^{\mathrm{R}}$.
$\mathrm{T} \rightarrow \mathrm{bTb} \quad$
$\mathrm{T} \rightarrow \mathrm{C}$
$\mathrm{C} \rightarrow \mathrm{CP} \quad{ }^{*}$ Generate a pusher P
$\mathrm{Paa} \rightarrow \mathrm{aPa} \quad / *$ Push one character to the right to get ready to jump.
$\mathrm{Pab} \rightarrow \mathrm{bPa}$
$\mathrm{Pba} \rightarrow \mathrm{aPb}$
$\mathrm{Pbb} \rightarrow \mathrm{bPb}$
$\mathrm{Pa} \# \rightarrow \# \mathrm{a} \quad /^{*}$ Hop a character over the wall.
$\mathrm{Pb} \# \rightarrow \# \mathrm{~b}$
$\mathrm{C} \# \rightarrow \varepsilon$

Computability

- Theorem: A language is generated by an unrestricted grammar if and only if it is in SD.
- Proof:
- (Grammar $\Rightarrow \mathrm{TM})$: by construction of an NDTM.
- $(\mathrm{TM} \Rightarrow$ grammar): by construction of a grammar that mimics the behavior of a semideciding TM.

Proof of Equivalence

- (Grammar $\Rightarrow \mathrm{TM})$: by construction of a two ${ }^{-}$ tape NDTM.
- Suppose $S \Rightarrow^{*}$ w.
w is on tape I . Start w/S on tape 2.
- Tape 2 simulates derivation.
- Non-deterministically choose production to apply to contents of tape 2. Rewrite string as appropriate.
- After each step see if matches input. If yes, halt.
- Semi-decides L(G).

Proof of Equivalence

- (TM \Rightarrow Grammar): Construct grammar G to simulate TM M.
- Phase I generates a candidate string for acceptance. Phase 2 will then simulate the TM computation on the string.
Phase 3 will clean up the tape, so tape only contains original candidate string.
- Problem: Original string got replaced during simulation!
- Solution: Duplicate it on odd cells of tape and only compute on the evens, preserving odds.

Proof of Equivalence

- $(\mathrm{TM} \Rightarrow$ Grammar): Construct grammar G to simulate TM M.
- Phase i: Generate a candidate string for acceptance.
- Generate a string of form
\# $\square \square$ qooo ar ar a2 a2 a3 a3 $\square \square$ \# representing input $a_{1} a_{2} a_{3}$ and qooo is encoding of start state
- Phase 2: If $\delta(\mathrm{p}, \mathrm{a})=(\mathrm{q}, \mathrm{b}, \rightarrow)$ add rule:
- $\mathrm{p}^{\prime} \mathrm{za} \mathrm{\rightarrow} \rightarrow \mathrm{zb} \mathrm{q}^{\text {d }}$ where p^{\prime}, q^{\prime} are codes of states p, q
- If $\delta(p, a)=(q, b \leftarrow) a d d$ xyp' $z a \rightarrow q^{\prime} x y z b$

