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Decision Problems for 
Regular Languages

• For FSMs/Regular languages, most things 
decidable:

• AFSM = {⟨M,w⟩ | M is an FSM and w ∈ L(M)} 

• EFSM ={M | M is a FSM and L(M)=∅} 

• TOTALFSM ={M | M is a FSM and L(M)=Σ*}

• EQUALFSM ={<M,N> | M,N are FSMs and L(M)=L(N)}

Decision Problems for CFGs

• Not for PDAs/CFGs:

• ACFG = {⟨G,w⟩ | G is a CFG and w ∈ L(G)} 

• ECFG ={G | G is a CFG and L(G)=∅} 

• FiniteCFG = {G | G is a CFG and L(G) is finite}

• TOTALCFG ={G | G is a CFG and L(G)=Σ*}

• EQUALCFG ={< G, G’ > | G, G’ are CFGs and L(G)=L(G’)}

• ....
Not Decidable!

TOTALCFG  is the key!

• Assume TOTALCFG is undecidable and show others 
undecidable.

• EQUALCFG ={< G, G’ > | G, G’ are CFGs & L(G)=L(G’)}

• Let GTot be a fixed grammar s.t. L(GTot) =  Σ*

• Suppose Oracle decides EQUALCFG

• To decide if G total, ask oracle about <G, GTot>.

• If yes, then G is total.  If no, then not.

• By contradiction, EQUALCFG is undecidable



Minimizing PDA’s

• MINPDA = {<M1, M2>: M2 is a minimization of M1}  
          is undecidable.

• Proof:  Suppose Oracle to solve MINPDA.   
Let Pa be PDA with one state that accepts everything (never 
push anything on stack).

• Given cfg G, construct equivalent PDA P s.t. L(P) = L(G).

• Submit <P,Pa> to Oracle and get answer to L(P) = L(G) = Σ*

Other Undecidable

• Is L(G) inherently ambiguous?

• Is L(G) ∩ L(G’) = ∅?

• If L(G) ⊆ L(G’)?

• Is complement of L(G) a cfl?

• Is L(G) regular?

TotalCFG is Undecidable

• Recall:  Configuration of TM M is a 4 tuple:

• M’s current state

• nonblank portion of the tape before the read head, 

• the character under the read head, 

• the nonblank portion of the tape after the read head

Computation

• A computation of M is a sequence of 
configurations: 

 C0, C1, …, Cn for some n ≥ 0 such that:

• C0 is the initial configuration of M, 

• Cn is a halting configuration of M, and: 

• C0 ⊢M  C1 ⊢M  C2 ⊢M … ⊢M  Cn.

• Computation history is sequence of 
configurations.



Proof

• Theorem: TotalCFG is undecidable

• Proof:  Reduction via halting

• Given M,w, build grammar G generating language L 
composed of all strings in Σ* except any representing a 
(halting) computation history of M on w.

• Suppose Oracle solves TotalCFG.  Run on G.

• If says yes, then M doesn’t halt on w

• If says no, then exist halting computation from w.

• Contradiction!

Recognizing Computation 
Histories

• Build PDA rather than CFG and then convert.

• For s to be computation history of M on w:

• It must be a syntactically valid computation history.

• C0 must correspond to M being in its start state, with w 
on the tape, and with the read head to the left of w.

• The last configuration must be a halting configuration.

• Each configuration after C0 must be derivable from the  
previous one according to the rules in δM.

Invalid Computation 
Histories

• Recognizing valid computations hard!

• Can get as intersection of two cfls!

• Invalid easier!  PDA can guess one of the 
following fails (use non-determinism!)

• Invalid syntax for configuration sequence.

• C0 not rep. opening config (bad state or input)

• Last configuration not halting

• Successor config not follow from previous according to 
transition function.

Recognizing Invalid 
Computations

• Last check can be done easily if have extra tape 
on TM (or extra read head)

• To check last point (transitions incorrect) with 
pda, must save a configuration on stack in 
order to check next.

• But elements popped off stack in opposite 
order added (LIFO).  How to compare??



Boustrophedon??

• Solve by writing every other configuration 
backwards, so can compare via stack.

• This text is written

• ot yaw yzarc siht ni

• show Boustrophedon style.

• Assume computation history written in 
Boustrophedon style

• Exists iff regular history exists!

Invalid Computation History

• If guessing particular step of computation is 
wrong in C0 C1R C2 ...

• Keep track of which direction going

• Push Ci (possibly reversed) onto stack

• Compare Ci+1 to make sure that there is an error

• In copying unchanged portion of configuration or

• In changing part reflecting transition.

• Hence whether L(G) = Σ* is undecidable.

Unrestricted Grammars

Unrestricted Grammars

• An unrestricted, or type 0 grammar  G is a 
quadruple (V, Σ, R, S), where:

• V is an alphabet,

•  Σ (the set of terminals) is a subset of V,

• R (the set of rules) is a finite subset of (V+ × V*),

• S (the start symbol) is an element of V - Σ.

• The language generated by G is: 
         {w ∈ Σ* : S ⇒G* w}.



Example 1:

• AnBnCn = {anbncn, n ≥ 0}

• S → aBSc  
S → ε 
Ba → aB  
Bc → bc  
Bb → bb

• Proof:

• Gives only strings in AnBnCn :

• All strings in AnBnCn are generated:

Example 2

• {w ∈ {a, b, c}* : #a(w) = #b(w) = #c(w)}

• S → ABCS 
S → ε 
AB → BA 
BC → CB 
AC → CA  
BA → AB 
CA → AC  
CB → BC 
A → a 
B → b 
C → c

Example 3

• WW = {ww : w ∈ {a, b}*}

• Idea:  Generate wCwR# and then reverse last part

WW = {ww : w ∈ {a, b}*}

• S → T# /* Generate the wall exactly once. 
T → aTa /* Generate wCwR. 
T → bTb ʺ  
T → C ʺ  
C → CP /* Generate a pusher P 
Paa→ aPa /* Push one character to the right  

    to get ready to jump. 
Pab → bPa ʺ  
Pba → aPb ʺ  
Pbb → bPb ʺ  
Pa# → #a /* Hop a character over the wall. 
Pb# → #b ʺ  
C# → ε



Computability

• Theorem: A language is generated by an 
unrestricted grammar if and only if it is in SD.

• Proof: 

• (Grammar ⇒ TM): by construction of an 
NDTM.

• (TM ⇒ grammar): by construction of a 
grammar that mimics the behavior of a semi-
deciding TM.

Proof of Equivalence

• (Grammar ⇒ TM): by construction of a two-
tape NDTM.

• Suppose S ⇒* w.  
w is on tape 1.  Start w/S on tape 2.

• Tape 2 simulates derivation.

• Non-deterministically choose production to apply to 
contents of tape 2.  Rewrite string as appropriate.

• After each step see if matches input.  If yes, halt.

• Semi-decides L(G).

Proof of Equivalence

• (TM ⇒ Grammar): Construct grammar G to 
simulate TM M.

• Phase 1 generates a candidate string for acceptance. 
Phase 2 will then simulate the TM computation on the 
string. 
Phase 3 will clean up the tape, so tape only contains 
original candidate string.

• Problem:  Original string got replaced during simulation!

• Solution:  Duplicate it on odd cells of tape and only 
compute on the evens, preserving odds.

Proof of Equivalence

• (TM ⇒ Grammar): Construct grammar G to 
simulate TM M.

• Phase 1:  Generate a candidate string for acceptance.

• Generate a string of form  
# ☐☐ q000 a1 a1 a2 a2 a3 a3 ☐☐ # 
representing input a1a2a3 and q000 is encoding of start state

• Phase 2:  If δ(p,a) = (q,b,→) add rule:

• p’ z a → z b q‘   where p’, q’ are codes of states p,q

• If δ(p,a) = (q,b,←) add    x y p’ z a → q’ x y z b


