Lecture 25: Language Hierarchies: Decidable & Semi-Decidable

CSCI 101 Spring, 2019

Kim Bruce

Decision Problems for Regular Languages

- For FSMs/Regular languages, most things decidable:
 - A_{FSM} = { $\langle M,\! w \rangle \mid M \text{ is an FSM and } w \in L(M)}$
 - $E_{FSM} = \{M \mid M \text{ is a FSM and } L(M) = \emptyset\}$
 - TOTAL $_{FSM}$ ={M | M is a FSM and L(M)= Σ^* }
 - EQUAL_{FSM} ={<M,N> | M,N are FSMs and L(M)=L(N)}

Decision Problems for CFGs

• Not for PDAs/CFGs:

•

- $A_{CFG} = \{\langle G, w \rangle \mid G \text{ is a } CFG \text{ and } w \in L(G)\}$
- $E_{CFG} = \{G \mid G \text{ is a } CFG \text{ and } L(G) = \emptyset\}$
- Finite_{CFG} = {G | G is a CFG and L(G) is finite}
- TOTAL_{CFG} ={G | G is a CFG and L(G)= Σ *}
- EQUAL_{CFG} ={<-G, G' > | G, G' are CFGs and L(G)=L(G')}

Not Decidable!

TOTAL_{CFG} is the key!

- Assume TOTAL_{CFG} is undecidable and show others undecidable.
- EQUAL_{CFG} ={< G, G' > | G, G' are CFGs & L(G)=L(G')}
 - Let G_{Tot} be a fixed grammar s.t. $L(G_{Tot}) = \Sigma^*$
 - Suppose Oracle decides EQUAL_{CFG}
 - To decide if G total, ask oracle about <G, G_{Tot}>.
 - If yes, then G is total. If no, then not.
 - By contradiction, EQUAL_{CFG} is undecidable

Minimizing PDA's

- MIN_{PDA} = {<M₁, M₂>: M₂ is a minimization of M₁} is undecidable.
 - Proof: Suppose Oracle to solve MIN_{PDA}. Let P_a be PDA with one state that accepts everything (never push anything on stack).
 - Given cfg G, construct equivalent PDA P s.t. L(P) = L(G).
 - Submit $\langle P,P_a \rangle$ to Oracle and get answer to $L(P) = L(G) = \Sigma^*$

Other Undecidable

- Is L(G) inherently ambiguous?
- Is $L(G) \cap L(G') = \emptyset$?
- If $L(G) \subseteq L(G')$?
- Is complement of L(G) a cfl?
- Is L(G) regular?

Total_{CFG} is Undecidable

- Recall: Configuration of TM M is a 4 tuple:
 - M's current state
 - nonblank portion of the tape before the read head,
 - the character under the read head,
 - the nonblank portion of the tape after the read head

Computation

- A computation of M is a sequence of configurations:
 - $C_{\circ}, C_{I}, ..., C_{n}$ for some $n \ge 0$ such that:
 - C_o is the initial configuration of M,
 - C_n is a halting configuration of M, and:
 - $C_{o} \vdash_{M} C_{r} \vdash_{M} C_{2} \vdash_{M} ... \vdash_{M} C_{n}$.
- Computation history is sequence of configurations.

Proof

- Theorem: Total_{CFG} is undecidable
 - Proof: Reduction via halting
 - Given M,w, build grammar G generating language L composed of all strings in Σ* except any representing a (halting) computation history of M on w.
 - Suppose Oracle solves Total_{CFG}. Run on G.
 - If says yes, then M doesn't halt on w
 - If says no, then exist halting computation from w.
 - Contradiction!

Recognizing Computation Histories

- Build PDA rather than CFG and then convert.
- For s to be computation history of M on w:
 - It must be a syntactically valid computation history.
 - C_o must correspond to M being in its start state, with w on the tape, and with the read head to the left of w.
 - The last configuration must be a halting configuration.
 - Each configuration after Co must be derivable from the previous one according to the rules in δ_M .

Invalid Computation Histories

- Recognizing valid computations hard!
 - Can get as intersection of two cfls!
- Invalid easier! PDA can guess one of the following fails (use non-determinism!)
 - Invalid syntax for configuration sequence.
 - + C_o not rep. opening config (bad state or input)
 - Last configuration not halting
 - Successor config not follow from previous according to transition function.

Recognizing Invalid Computations

- Last check can be done easily if have extra tape on TM (or extra read head)
- To check last point (transitions incorrect) with pda, must save a configuration on stack in order to check next.
- But elements popped off stack in opposite order added (LIFO). How to compare??

Boustrophedon??

- Solve by writing every other configuration backwards, so can compare via stack.
 - This text is written
 - ot yaw yzarc siht ni
 - show Boustrophedon style.
- Assume computation history written in Boustrophedon style
- Exists iff regular history exists!

Invalid Computation History

- If guessing particular step of computation is wrong in $C_o C_{r^R} C_{2 \dots}$
 - Keep track of which direction going
 - Push C_i (possibly reversed) onto stack
 - - In copying unchanged portion of configuration or
 - In changing part reflecting transition.
- Hence whether $L(G) = \Sigma^*$ is undecidable.

Unrestricted Grammars

Unrestricted Grammars

- An unrestricted, or type 0 grammar G is a quadruple (V, Σ, R, S), where:
 - V is an alphabet,
 - Σ (the set of terminals) is a subset of V,
 - R (the set of rules) is a finite subset of $(V^* \times V^*)$,
 - S (the start symbol) is an element of V Σ .
- The language generated by G is: $\{w \in \Sigma^* : S \Rightarrow_G^* w\}.$

Example 1:

- $A^nB^nC^n = \{a^nb^nc^n, n \ge 0\}$
 - $S \rightarrow aBSc$
 - $S \rightarrow \epsilon$
 - $Ba \rightarrow aB$
 - $Bc \rightarrow bc$ $Bb \rightarrow bb$
- Proof:
 - Gives only strings in AⁿBⁿCⁿ :
 - All strings in $A^nB^nC^n$ are generated:

Example 2

- {w \in {a, b, c}* : $\#_a(w) = \#_b(w) = \#_c(w)$ }
 - $S \rightarrow ABCS$ $S \rightarrow \varepsilon$ $AB \rightarrow BA$ $BC \rightarrow CB$ $AC \rightarrow CA$ $BA \rightarrow AB$ $CA \rightarrow AC$ $CB \rightarrow BC$ $A \rightarrow a$ $B \rightarrow b$
 - $C \rightarrow c$

Example 3

- WW = {ww : $w \in \{a, b\}^*$ }
 - Idea: Generate $wCw^R#$ and then reverse last part

WW = {ww : $w \in \{a, b\}^*$ }

• $S \rightarrow T #$ /* Generate the wall exactly once. T → aTa /* Generate wCwR. $T \rightarrow bTb$ " $T \rightarrow C$ $C \rightarrow CP$ /* Generate a pusher P Paa→ aPa /* Push one character to the right to get ready to jump. Pab → bPa Pba → aPb $Pbb \rightarrow bPb$ $Pa \# \rightarrow \#a$ /* Hop a character over the wall. $Pb# \rightarrow #b$ $C \# \rightarrow \epsilon$

Computability

- Theorem: A language is generated by an unrestricted grammar if and only if it is in SD.
- Proof:
- (Grammar ⇒ TM): by construction of an NDTM.
- (TM ⇒ grammar): by construction of a grammar that mimics the behavior of a semi-deciding TM.

Proof of Equivalence

- (Grammar ⇒ TM): by construction of a twotape NDTM.
 - Suppose S ⇒* w. w is on tape 1. Start w/S on tape 2.
 - Tape 2 simulates derivation.
 - Non-deterministically choose production to apply to contents of tape 2. Rewrite string as appropriate.
 - After each step see if matches input. If yes, halt.
 - Semi-decides L(G).

Proof of Equivalence

- (TM ⇒ Grammar): Construct grammar G to simulate TM M.
 - Phase 1 generates a candidate string for acceptance. Phase 2 will then simulate the TM computation on the string.

Phase 3 will clean up the tape, so tape only contains original candidate string.

- Problem: Original string got replaced during simulation!
- Solution: Duplicate it on odd cells of tape and only compute on the evens, preserving odds.

Proof of Equivalence

- (TM ⇒ Grammar): Construct grammar G to simulate TM M.
 - Phase 1: Generate a candidate string for acceptance.
 - Generate a string of form # □□ q000 at at a2 a2 a3 a3 □□ # representing input a;a₂a3 and q000 is encoding of start state
 - Phase 2: If $\delta(p,a) = (q,b,\rightarrow)$ add rule:
 - $p' z a \rightarrow z b q'$ where p', q' are codes of states p,q
 - If $\delta(p,a) = (q,b,\leftarrow) add x y p'z a \rightarrow q'x y z b$