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Halting Problem in Java

• Can we determine whether given a Java 
program P, will P ever halt?

• Suppose there is a solution:

• a class with method halts that takes as inputs a string 
with the name of the file, and then returns true or false 
depending on whether or not the file contains a program 
that halts on the empty string.

/* Charlatan class contains method halts, which takes a filename as input 
returning true iff the program in the file is legal and halts on empty input. */

public class Debunker {

   public void what(String fileName) {
      Charlatan charlatan = new Charlatan(); 
      if (charlatan.halts(fileName)) {
         while (true){}   // run forever!
      }                
   }     // else halt

   public static void main(String[] args) {
      Debunker debunk = new Debunker();
      debunk.what("Debunker.java");}
   }
} 

The Charlatan lies!

• If charlatan.halts("Debunker.java") returns true 
then method what enters while loop 

• runs forever -> doesn’t halt!

• If charlatan.halts("Debunker.java") is false then 
procedure completes 

• halts!

• What do we know about charlatan.halts?

• Can’t work as promised!
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Decidable & Semidecidable The Hierarchy

• Theorem: The set of context-free languages is a 
proper subset of D.

• Proof:  Every context-free language is decidable, so the 
context-free languages are a subset of D.  

• There is at least one language, AnBnCn, that is decidable 
but not context-free.  

Distinguishing D and SD

• Most obvious languages in SD also in D

• AnBnCn = {anbncn | n ≥ 0}

• {wcw | w ∈ {a, b}*}

• {ww | w ∈ {a, b}*}

• {w of form x∗y=z: x,y,z ∈ {0, 1}* and, when x, y, and z are 
viewed as binary numbers, x*y = z}

• But already found some in gap, e.g. HTM

Outside of SD

• Uncountably many languages outside of SD

• Example: Complement of HTM



Closure Properties

• Theorem:  D is closed under complement

• Proof:  Let L ε D.  Build TM deciding L

• ...

• Proof depends on TM deterministic and always halts.

• What about SD?

• Not true for HTM

Equivalences to SD

• A TM M enumerates the language L iff, for some 
fixed state p of M, 
        L = {w : (s, ε) |-M* (p, w)}.

• Potentially infinite computation.

• A language is Turing-enumerable iff there is a 
Turing machine that enumerates it.

SD & Turing Enumerable

• Theorem:  A language is SD iff it is Turing 
enumerable.

• Proof:  Spose L is Turing enumerable.  Show L is SD.

• Let w be input.  Start enumerating L.  Every time enter state p, 
check to see if contents of tape is w.  If yes then halt and stop.  
Otherwise keep going.

• “Obvious” proof in other direction not work!

SD & Turing Enumerable

• Theorem:  A language is in SD iff it is Turing 
enumerable.

• Proof (cont):  Spose L is in SD.  Show L can be enumerated.

• Enumerate all w ∈ Σ* lexicographically:  ε, a, b, aa, ab, ba, bb, ...

• As each wi is enumerated, start a copy of M to check with wi as input.

• Execute one step of each M with wi started, excluding those that have 
halted

• Whenever an M accepts a wi, output wi.

• Called dove-tailing



Lexicographically 
Enumerable

• M lexicographically enumerates L iff M 
enumerates the elements of L in lexicographic 
order.  

• A language L is lexicographically Turing-
enumerable iff there is a Turing machine that 
lexicographically enumerates it.

Lexicographically 
Enumerable

• Theorem:  A language is in D iff it is 
lexicographically enumerable.

• Proof:  Suppose L is in D.  Show L can be enumerated 
lexicographically.

• Enumerate all w ∈ Σ* lexicographically:  ε, a, b, aa, ab, ba, bb, ...

• As each wi is enumerated, run M deciding L on wi as input.

• If M accepts a wi, output wi.  Otherwise go to next.

• Easier here because M always halts

Lexicographically 
Enumerable

• Theorem:  A language is in D iff it is 
lexicographically enumerable.

• Proof (cont):  Spose L can be enumerated 
lexicographically.  Show L is in D. 

• To determine if w in L:

• Start enumerating all elts of L lexicographically

• If w is enumerated, then accept.

• If go past w in lexicographic order, then reject

• If halts before getting to w, then also reject.

Oops!

• Second part of proof has a hole.

• Suppose M lexicographically enumerates L = {a,ba,aba} by 
enumerating three elements and then continuing forever 
without ever enumerating another element.  If w comes 
after last element, then won’t know if in or not!

• Can only happen if L is finite.

• But all finite languages are decidable.

• Fixes proof

• But not decidable whether L is finite!!



Summary

• Church-Turing Thesis:  all models of 
computation give same computable functions

• Halting problem is undecidable.

• Can prove lots of others undecidable by using them to 
solve halting problem.

• Semi-decidable sets equivalent to Turing 
enumerable.

• Decidable if Turing lexicographically-enumerable.

Application of Homework

• Can define the typed lambda calculus.

• Can prove that every program in typed lambda 
calculus is total.

• Therefore does not include all total 
computable functions.

• Type systems are either conservative or 
incorrect.

Rice’s Theorem

• No non-trivial property of the SD languages is 
decidable 
or equivalently

• Any language that can be described as  
{<M> | P(L(M)) = true} 
for any non-trivial property P, is not in D

• A property is trivial if it is either true for all 
languages or false for all languages. 

Applying Rice

• Must specify property P

• Show domain of P is SD languages, e.g., 
languages accepted by TM’s.

• Show P is non-trivial

• true of at least one , false of at least one.



Proof of Rice

• Proof:  Let P be a non-trivial property of SD 
languages.  Show can reduce Halting to  
L = {<M> | P(L(M)) = true}

• ∅ is an SD language.  Suppose P(∅) = true

• Similar proof if it is false (use not-P instead).

• Since P is non-trivial, ∃L’ in SD s.t. P(L’) = false.  
Let M’ semi-decide L’

Proof of Rice (cont.)

• Build new TM from M’ that will decide HTM.

• Given <M,w>, build Mw’ s.t., when started w/ x:

• Copy x onto another work tape

• Erase and write w on input tape

• Run M on w

• Copy x back on tape and run M’ on x

• Recall M’ semi-decides L’ and P(L’) = false

Proof of Rice (cont.)

• Recall M’ semi-decides L’ and P(L’) = false

• If <M,w> ∈ HTM then Mw’ accepts L’

• If <M,w> ∉ HTM then Mw’ accepts ∅.

• Thus <M,w> ∈ HTM iff P(L(Mw’)) = false  
                                   iff not(<Mw’> ∈ L)

• Therefore HTM ≤M L and L is undecidable!

More Undecidable

• Is L(M) regular?

• Is L(M) context-free?

• Can we automatically check if your program is 
correct (e.g., matches the solution)?

• Does M ever halt with an error?



Decision Problems for 
Regular Languages

• For FSMs/Regular languages, most things 
decidable:

• AFSM = {⟨M,w⟩ | M is an FSM and w ∈ L(M)} 

• EFSM ={M | M is a FSM and L(M)=∅} 

• TOTALFSM ={M | M is a FSM and L(M)=Σ*}

• EQUALFSM ={<M,N> | M,N are FSMs and L(M)=L(N)}

Decision Problems for CFGs

• Not for PDAs/CFGs:

• ACFG = {⟨G,w⟩ | G is a CFG and w ∈ L(G)} 

• ECFG ={G | G is a CFG and L(G)=∅} 

• FiniteCFG = {G | G is a CFG and L(G) is finite}

• TOTALCFG ={G | G is a CFG and L(G)=Σ*}

• EQUALCFG ={< G, G’ > | G, G’ are CFGs and L(G)=L(G’)}

• ....
Not Decidable!


