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Diagonalization

• Show the number of functions from N to N is 
uncountable.

• Proof by contradiction

• Suppose countable.  List them all: f0, f1, … 

• Claim list is missing at least one.  Define g(n) = fn(n) + 1.

• g is not included in fi because for all n, g(n) != fn(n) so g != fn

• Can be no listing of all functions from N to N.

• Thus N →N is uncountable.

Diagonalization Redux
• Theorem: There are effectively computable 

total functions that are not included in the 
primitive recursive functions.

• The set of primitive recursive functions is can be 
“effectively enumerated”, so list them:  f0, f1, … 

• You showed all total.

• Define d s.t. d(n) = fn(n) + 1.  Function d is total and not 
in list — therefore not primitive recursive.

• What did we need to know about primitive recursive functions 
for proof to work?

Undecidability



Computations on Machines

• Look at the following languages:

• EDFA ={<M> | M is a DFA and L(M)=∅} 
EQDFA = {⟨M,N⟩ | M and N are DFAs and L(M) = L(N)} 
ADFA = {⟨M,w⟩ | M is a DFA and w ∈L(M)}

• Showed before (informally) that these are 
decidable.

• Can do the same for PDA’s.

• First & third decidable, second is not!

What about TM’s

• We’ll see corresponding sets not decidable

• and perhaps even not semi-decidable.

• Recall L semi-decidable means may not halt if answer no

• Two more sets:

• HTM = {⟨M,w⟩ | M is a TM which halts on input w} 
TOTALTM = {<M> | M halts on all inputs}

• See later that neither is decidable.

Decision Problems with TM’s
• Look at following sets:

• ATM = {⟨M,w⟩ | M is a TM and w ∈ L(M)}

• HTM = {⟨M,w⟩ | M is a TM which halts on input w} 

• TOTALTM = {M | M halts on all inputs}

• ETM ={M | M is a TM and L(M)=∅}

• Halting easy for most algorithms, but:

• times3(x: positive integer) =  
    while x ≠ 1 do: 
        If x is even then x = x/2.  
                            else x = 3x + 1 

Universe of discourse

• Easy to determine if have encoding of a TM, so 
we’ll ignore it when take complements, etc., so 
our universe of discourse will only consider 
those with valid TM encodings.



Semi-decidable
• ATM and HTM both semi-decidable using UTM.

• Show HTM not decidable.

• Let E be candidate TM to decide HTM.  Show can’t be right.

• From E, create TM D s.t. if input w, create <w,w> and simulate 
E on it (i.e, it treats input as if of form <M,w>)

• If E rejects then make D accept and if E accepts, D loops forever

• Now run D on <D>

• If <D,D> ∈ HTM then D halts on D, so E rejected <D,D> & <D,D> ∉ L(E)

• If <D,D> ∉ HTM then D not halt on D, so E accepted, <D,D> ∈ L(E)

• Either way, L(E) ≠ HTM with <D,D> in one but not other.

Diagonal Argument

Decidable and Semi-
decidable

• Earlier: If L and its complement are both semi-
decidable then it is decidable.

• Corollary:  Complement of HTM is not semi-decidable

• Note, if HTM were decidable then every SD 
language would be decidable.

• Lots of other languages not decidable:

• L0 = {<M,w> | M on w eventually writes a 0}

• ...

Undecidability
• ETM ={<M> | M is a TM and L(M)=∅}

• Spose decidable.  For each pair <M,w> define machine 
M’w that throws away its input and simulates M on w and 
if it halts then accept.

• Then M’w ∈ ETM iff not(<M,w> ∈ HTM).

• Thus could use solution to ETM to solve HTM.

• Therefore ETM is not decidable.

• General procedure to show undecidability

• Reduce halting problem to solving other problem.

• Proofs are by contradiction

Undecidability

• TOTALTM ={<M> | M is TM that halts on all 
inputs}

• Spose decidable.  Use to solve halting!

• For each pair <M,w> define machine M’w that throws away its 
input and simulates M on w, if if it halts.

• Then M’w ∈ TOTALTM iff <M,w> ∈ HTM.

• Thus could use solution to TOTALTM to solve HTM.

• Therefore TOTALTM is not decidable.



More Undecidability

• Lε = {<M> | M halts on empty tape}

• Given M, w, create machine Mw that writes w and then 
simulates M on that w.

• Claim <Mw> ∈ Lε iff <M,w> ∈ HTM.

• Therefore Lε not decidable

Another Example
• Lε0 = {<M> | M on ε eventually writes a 0}

• Given M, rewrite to replace any occurrences of 0 in 
transitions by new character φ.

• If 0 in input alphabet replace all occurrences of 0 on input by φ.

• Modify again so that if it ever goes into a halt state then 
writes 0 on tape.  Call this machine M’

• One last modification:  Erase input, write w, then run M’ 
on w.  Call new machine M’w.

• Claim < M’w > ∈ Lε0 iff <M,w> ∈ HTM.

• Therefore can use Lε0 to solve halting problem, so not 
decidable.

Back to Hilbert

• Entscheidungsproblem posed by David Hilbert 
in 1928.

• Find an algorithm that will take as input a description of 
a formal language and a mathematical statement in the 
language and produce as output either "True" or "False" 
according to whether the statement is true or false.

• If find an algorithm, then no problem, but ...

• how do you show there is no such algorithm?

• Turing’ solution used undecidability of halting

Entscheidungsproblem
• Turing’s solution:

• First showed universal TM

• Essentially showed undecidability of halting problem

• Actually “circle-free” TM’s

• Showed undecidability of determining if ever write 0 on 
empty input

• Can encode TM as a number (we did as string).

• Showed given TM M, can write a logical formula ψ of 
predicate logic such that ψ is true iff M writes 0 on ε

• Contradiction!  Therefore not decidable



Entscheidungsproblem
• Even more on Turing’s solution last step:

• Given TM M, can write a logical formula ψ of predicate 
logic such that ψ is true iff M writes 0 on ε input.

• Let ψ be statement:  In some configuration of  M starting with ε, some 
square s contains the symbol o

• Let φ1,...,φn be axioms for M.

• Then formula is φ1∧... ∧φn→ ψ

• Thus M writes 0 on input ε iff φ1∧... ∧φn→ ψ is provable in 
predicate calculus. 

• Thus if can decide provability then can decide if M writes 0 on ε 

• Therefore provability undecidable!


