Lecture 24: Halting Problem

CSCI 101 Spring, 2019

Kim Bruce

Diagonalization

- Show the number of functions from N to N is uncountable.
 - Proof by contradiction
 - Suppose countable. List them all: $f_{\scriptscriptstyle O}, f_{\scriptscriptstyle I}, ...$
 - Claim list is missing at least one. Define $g(n) = f_n(n) + I$.
 - g is not included in f_i because for all n, $g(n) \stackrel{!}{:} f_n(n)$ so g $\stackrel{!}{:} f_n$
 - Can be no listing of all functions from N to N.
 - Thus $N \rightarrow N$ is uncountable.

Diagonalization Redux

- Theorem: There are effectively computable total functions that are not included in the primitive recursive functions.
 - The set of primitive recursive functions is can be "effectively enumerated", so list them: $f_o, f_i, ...$
 - You showed all total.
 - Define d s.t. $d(n) = f_n(n) + I$. Function d is total and not in list therefore not primitive recursive.
 - What did we need to know about primitive recursive functions for proof to work?

Undecidability

Computations on Machines

- Look at the following languages:
 - $E_{DFA} = \{\langle M \rangle | M \text{ is a DFA and } L(M) = \emptyset \}$ $EQ_{DFA} = \{\langle M, N \rangle | M \text{ and } N \text{ are DFAs and } L(M) = L(N) \}$ $A_{DFA} = \{\langle M, w \rangle | M \text{ is a DFA and } w \in L(M) \}$
- Showed before (informally) that these are decidable.
- Can do the same for PDA's.
 - First & third decidable, second is not!

What about TM's

- We'll see corresponding sets not decidable
 - and perhaps even not semi-decidable.
 - Recall L semi-decidable means may not halt if answer no
- Two more sets:
 - $H_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM which halts on input } w \}$ TOTAL_{TM} = $\{\langle M \rangle \mid M \text{ halts on all inputs}\}$
 - See later that neither is decidable.

Decision Problems with TM's

- Look at following sets:
 - $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a } TM \text{ and } w \in L(M)\}$
 - $H_{TM} = \{\langle M, w \rangle \mid M \text{ is a } TM \text{ which halts on input } w\}$
 - TOTAL_{TM} = $\{M \mid M \text{ halts on all inputs}\}$
 - $E_{TM} = \{M \mid M \text{ is a TM and } L(M) = \emptyset\}$
- Halting easy for most algorithms, but:

```
    times3(x: positive integer) =
while x ≠ 1 do:
If x is even then x = x/2.
else x = 3x + 1
```

Universe of discourse

• Easy to determine if have encoding of a TM, so we'll ignore it when take complements, etc., so our universe of discourse will only consider those with valid TM encodings.

Semi-decidable

- \bullet A_{TM} and H_{TM} both semi-decidable using UTM.
- Show H_{TM} not decidable.
 - Let E be candidate TM to decide H_{TM} . Show can't be right.
 - From E, create TM D s.t. if input w, create <w,w> and simulate E on it (*i.e, it treats input as if of form <M*,w>)
 - If E rejects then make D accept and if E accepts, D loops forever
 - Now run D on <D>

Diagonal Argument

- * If <D,D> \in H_{TM} then D halts on D, so E rejected <D,D> & <D,D> \notin L(E)
- If <D,D> $\notin H_{\rm TM}$ then D not halt on D, so E accepted, <D,D> $\in L(E)$
- + Either way, L(E) \neq H_{\rm TM} with <D,D> in one but not other.

Decidable and Semidecidable

- *Earlier:* If L and its complement are both semidecidable then it is decidable.
 - Corollary: Complement of $H_{\rm TM}$ is not semi-decidable
- Note, if H_{TM} were decidable then every SD language would be decidable.
- Lots of other languages not decidable:
 - $L_o = \{ <M, w > | M \text{ on } w \text{ eventually writes a } o \}$
 - ...

Undecidability

- $E_{TM} = \{<M > | M \text{ is a TM and } L(M) = \emptyset\}$
 - Spose decidable. For each pair <M,w> define machine M'w that throws away its input and simulates M on w and if it halts then accept.
 - Then $M'_w \in E_{TM}$ iff not(<M,w> $\in H_{TM}$).
 - Thus could use solution to E_{TM} to solve $H_{TM}.$
 - Therefore E_{TM} is not decidable.
- General procedure to show undecidability
 - Reduce halting problem to solving other problem.
 - Proofs are by contradiction

Undecidability

- TOTAL_{TM} ={<M> | M is TM that halts on all inputs}
 - Spose decidable. Use to solve halting!
 - For each pair <M,w> define machine M'_w that throws away its input and simulates M on w, if if it halts.
 - Then $M'_w\!\in\!\mathrm{TOTAL_{TM}}$ iff <M,w> $\in\!H_{TM}.$
 - Thus could use solution to $\mathrm{TOTAL}_{\mathrm{TM}}$ to solve $H_{\mathrm{TM}}.$
 - Therefore TOTAL_{TM} is not decidable.

More Undecidability

- $L_{\epsilon} = \{ <M > | M \text{ halts on empty tape} \}$
 - Given M, w, create machine $M_{\rm w}$ that writes w and then simulates M on that w.
 - Claim $< M_w > \in L_{\epsilon}$ iff $< M, w > \in H_{TM}$.
 - Therefore L_{ϵ} not decidable

Another Example

- $L_{\epsilon_0} = \{ <M > \mid M \text{ on } \epsilon \text{ eventually writes a } 0 \}$
 - Given M, rewrite to replace any occurrences of o in transitions by new character ϕ .
 - If 0 in input alphabet replace all occurrences of 0 on input by $\varphi.$
 - Modify again so that if it ever goes into a halt state then writes 0 on tape. Call this machine M'
 - One last modification: Erase input, write w, then run M' on w. Call new machine M'w.
 - Claim < M'_w > \in L_{εo} iff < M,w > \in H_{TM} .
 - Therefore can use $L_{\epsilon\circ}$ to solve halting problem, so not decidable.

Back to Hilbert

- Entscheidungsproblem posed by David Hilbert in 1928.
 - Find an algorithm that will take as input a description of a formal language and a mathematical statement in the language and produce as output either "True" or "False" according to whether the statement is true or false.
- If find an algorithm, then no problem, but ...
 - how do you show there is no such algorithm?
 - Turing' solution used undecidability of halting

Entscheidungsproblem

- Turing's solution:
 - First showed universal TM
 - Essentially showed undecidability of halting problem
 - Actually "circle-free" TM's
 - Showed undecidability of determining if ever write 0 on empty input
 - Can encode TM as a number (we did as string).
 - Showed given TM M, can write a logical formula ψ of predicate logic such that ψ is true iff M writes 0 on ϵ
 - Contradiction! Therefore not decidable

Entscheidungsproblem

- Even more on Turing's solution last step:
 - Given TM M, can write a logical formula ψ of predicate logic such that ψ is true iff M writes 0 on ϵ input.
 - + Let ψ be statement: In some configuration of $\,M$ starting with $\epsilon,$ some square s contains the symbol o
 - Let $\phi_1, ..., \phi_n$ be axioms for M.
 - Then formula is $\phi_1 \wedge ... \land \phi_n \rightarrow \psi$
 - Thus M writes \circ on input ε iff $\phi_1 \wedge ... \land \phi_n \rightarrow \psi$ is provable in predicate calculus.
 - Thus if can decide provability then can decide if M writes 0 on ϵ
 - Therefore provability undecidable!