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What does it mean for a 
language to be type-safe?

Safe Languages

• Two kinds of execution errors
- Trapped errors: cause computation to halt immediately.

• Divide by zero, null pointer exception

- Untrapped errors: go unnoticed and later cause problems.
• Access an illegal address, e.g., array bounds error.

• Program fragment is safe if it causes no untrapped 
errors.
- Language is safe if all program fragments are safe.

See “Type Systems” by Luca Cardelli
http://lucacardelli.name/Papers/TypeSystems%201st%20Edition.US.pdf

Strongly Typed Languages

• Language designates forbidden errors 
- those that are not allowed to happen.

- should include all untrapped errors

• Program fragment is well behaved if it generates 
no forbidden errors.

• Language where all legal programs are well 
behaved is strongly typed



Static vs. Dynamic Typing
• Most use static typing 
- including C/Java/ML/Haskell

- binding of types to variables done at translation time.

- Find errors earlier, but conservative.

• dynamic typing
- LISP/Scheme/Racket/Python/Javascript/Grace 

- binding  of type to value, not variable.
• thus binding of type to variable changes dynamically

- Dynamic more flexible, but more overhead.

(Static) Type Checking

Static Type Checking

• Static type-checkers for strongly-typed 
languages (i.e., rule out all “bad” programs) 
must be conservative:
- Rule out some programs without errors.

• if (program-that-could-run-forever) { 
     expression-w-type-error;  
} else { 
    expression-w-type-error; 
}

Type checking
• Most statically typed languages also include 

some dynamic checks.  
- array bounds.

- Java’s instanceof

- typecase or type casts

• Pascal statically typed, but not strongly typed
- variant records (essentially union types), dangling pointers

• Haskell, ML, Java strongly typed

• C, C++ not strongly typed



Type Compatibility

• When is x := y legal?
Type T = Array [1..10] of Integer; 
Var A, B : Array [1..10] of Integer; 
C : Array [1..10] of Integer; 
D : T; 
E : T; 

• Name EquivalenceA (Ada)

• Name Equivalence (Pascal, Modula-2, Java)

• Structural Equivalence (Modula-3, Java arrays 
only, Grace)

Structural Equivalence

• Can be subtle:
T1 = record a : integer; b : real end; 
T2 = record c : integer; d : real end; 
T3 = record b : real; a : integer end; 

• Which are the same? 
T = record info : integer; next : ^T end; 
U = record info : integer; next : ^V end; 
V = record info : integer; next : ^U end;

Type Checking & Inference

• Write explicit rules.  Let a, b be expressions
- if a, b:: Integer,  

then a+b, a*b, a div b, a mod b:: Integer

- if a, b:: Integer then a < b, a = b, a > b : Bool

- if a, b: Bool then a && b, a || b: Bool

- ...

Formal Type-Checking Rules

• Can rewrite more formally.

• Expression may involve variables, so type check 
wrt assignment E of types to variables.
- E.g., E(x) = Integer, E(b) = Bool, ...

E(x) = t
––––––––––––––

E |- x : t

E |- a : int, E |- b : int
––––––––––––––––––––––––––––

E |- a+b : int

Hypothesis
Conclusion



Can write formally
Function Application:

E |- f: σ → τ,     E |- M : σ
––––––––––––––––––––––

E |- f(M) : τ

Function Definition:
E ∪ {v:σ} |- Block : τ

––––––––––––––––––––––––
E |- fun (v:σ) Block : σ → τ

Can write for all language constructs.  
Based on context free grammar.

Can read off type-checking algorithm.

Haskell Type Inference
How does Haskell know what you meant?

Haskell Type Inference

1. An identifier should be assigned the same type 
throughout its scope. 

2. In an “if-then-else” expression, the condition must have 
type Bool and the “then” and “else” portions must have 
the same type. The type of the expression is the type of 
the “then” and “else” portions. 

3. A user-defined function has type a → b, where a is the 
type of the function’s parameter and b is the type of its 
result. 

4.In a function application of the form f x, there must be 
types a and b such that f has type a → b, x has type a, 
and the application itself has type b. 

Examples of Type Inference

map = \ f -> \ l -> 
         if l == [] then [] 
             else (f (head l)): (map f (tail l)) 

• Use rules to deduce types:

- map:: a → b  because function

- f :: a,  \ l -> ... :: b,  Thus b = c → d

- l :: c,  if l = [] then ... :: d

- ...
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double(f,x) = f(f(x))
or equivalently 

double = \ (f,x) -> f(f(x))

@ = application Outcome of Type Inference

• Overconstrained:  no solution
Prelude> tail 7

<interactive>:1:5:
    No instance for (Num [a])
      arising from the literal `7' at <interactive>:1:5
    Possible fix: add an instance declaration for (Num [a])
    In the first argument of `tail', namely `7'
    In the expression: tail 7
    In the definition of `it': it = tail 7

• Underconstrained:  polymorphic

• Uniquely determined

By the way, ...

• Inference due to Hindley-Milner

• SML/Haskell type inference is doubly 
exponential in the worst case!

• Can write down terms tn of length n such that 
the length of the type of tn is of length 22n

• Luckily, it doesn’t matter in practice, 
- no one writes terms whose type is exponential in the 

length of the term!

Restrictions on ML/Haskell 
Polymorphism

• Type (a → b) →([a] → [b]) stands for:

- ∀a. ∀b. (a → b) →([a] → [b])

• Haskell functions may not take polymorphic 
arguments.  E.g., no type:
- ∀b. ((∀a.(a → a)) →(b → b))

- define:  foo f  (x,y) = (f x, f y) 

- id z = z

- foo id (7, True)  -- gives type error!

- Type of foo is only (t -> s) -> (t, t) -> (s, s)



Restrictions on Implicit 
Polymorphism

Polymorphic types can be defined at top level or in let clauses, 
but can’t be used as arguments of functions

   id x = x 
      in (id "ab", id 17)

OK, but can't write

   test g = (g “ab”, g 17)

Can’t find type of test w/unification.
More general type inference is undecidable.

Explicit Polymorphism

Easy to type w/ explicit polymorphism:
    
  test (g: forall t.t -> t) = (g “ab”, g 17) 
     in test (\t => \(x:t) -> x)

Languages w/explicit polymorphism:
Clu, Ada, C++, Eiffel, Java 5, C#, Scala, Grace

Explicit Polymorphism

• Clu, Ada, C++, Java

• C++ macro expanded at link time rather than 
compile time.

• Java compiles away polymorphism, but checks 
it statically.

• Better implementations keep track of type 
parameters.

Summary

• Modern tendency: strengthen typing & avoid 
implicit holes, but leave explicit escapes

• Push errors closer to compile time by:
- Require over-specification of types

- Distinguishing between different uses of same type

- Mandate constructs that eliminate type holes

- Minimizing or eliminating explicit pointers

• Holy grail: Provide type safety, increase flexibility


