Lecture 22: Writing

Interpreters 2/Undecidability

CSCI 101
Spring, 2019

Kim Bruce

PCF Semantics w/Environments

* Substitution slow & space consuming
e Can’t handle terms w/free variables
¢ Environment allows to evaluate once.

* Meaning now separate set of values -- not just
rewriting

* Meaning of function is closure, which carries
around its environment of definition.

The Problem

* Program:
-y=4
~fx=x+y
-g)=lety=5in(h2) +y
- g®

e When evaluate (h 2), the needed y is out of
scope!

Values of Answers

e Key difference w/ new interpreter

- Update environment, not rewrite term!

- Not destructive!

e Mutually recursive type definitions:
data Value = NUM Int | BOOL Bool | SUCC | PRED |
ISZERO | CLOSURE (String, Term, Env) |
THUNK (Term, Env) | ERROR (String, Value)
type Env = [(String, Value)}

Solving the Problem

e Program:
“Yy=4
- fx=x+y
-g)=lety=5in(h2) +y
- g®

* f evaluates to <fn x => x+y, [y->41>

o g(f) partially evaluates to (h 2) +y in environment
where env = [y->5, h-> <fn x => x+y, [y->41>}

PCF Syntax & Semantics
with Environments

env:: string -> value

(0) (id, env) = env(id)

(1) (n, env) = n formnaninteger.

(2) (true, env) = true, (false, e) = false

(3) (error, env) = error

(4) (succ, env) = succ, Similarly for other initial functions
(b, env) = true (el, env) = v

(5) —mmm e e -

(if b then el else e2, env) = Vv

More PCF Semantics

(b, env) = false (e2, env) = v
(6) ————————
(if b then el else e2, env) = Vv
(el, env) = succ (e2, env) = n
(7) ————————
((el e2), env) = (n+l)
(8)
(9)

(10)

(12)

Revised PCF Semantics

Closure(x,e,env)

((fn x => e), env) = <fn x => e, env>

(el,env) = <fn x => e3, env’> (e2, env) = vl

(e3, env'[Vv1l/X]) = VvV

((el e2), env) = v Thunk(rec x => e, env)

(e, env[(rec x => e)/x]) = v

((rec x => e), env) = v

See code on-line in

PCFEnvInterpreter.hs Imperative Languages

Summary of

Adding State For Assignment Operational Semantics

(e, ev,s) = (m,s) (e2,ev,s) = (n,s”) e Meaning of program is sequence of states go
(e1 + e2, ev, s) = (m+n, s”) through during execution
M, ev,s)=(ys) e Useful for compiler writers, complexity analysis

X:=M,ev,s)=(,sv/evX)D
* Ideal is abstract machine that is simple enough
(fnx=>M,ev,s) = (<fnx=>M, ev>,5s) that it is impossible to misunderstand

operation.
fevs)=(fx=>M,ev’>7s), N,evs)= (s, P

M, ev’[v/iX], s”) = 7, s7)
(fN), ev, s) = ,s”)

e Should be easy to map to any computer.

If have time, come back later
to talk about axiomatic
semantics

