Lecture 21: Writing Interpreters

CSCI 101 Spring, 2019

Kim Bruce

Writing Interpreters

With More Work ...

- Show anything computable by TM is computable by lambda calculus ...
 - or by RAM, or WHILE language, or ...
- ... and vice-versa!

Natural (Operational) Semantics

- Arithmetic expressions example on web page
 - Start w/parse tree: ArithSemantics.hs
- How to interpret identifiers?
- Environment: Association list of id's & values.
- Semantics defined recursively on abstract syntax trees.

PCF

- Programming language for Computable Functions
- Includes recursive definitions
- Call-by-value (eager) semantics
- Function application as substitution
- Rewriting semantics

Semantics in English

- Semantics of succ e
 - Evaluate expression e to value v
 - return v+I
- Semantics of if b then el else e2
 - Evaluate b
 - if b evaluates to true return value of e1 otherwise return value of e2

PCF Syntax & Semantics

- e ::= $x \mid n \mid$ true | false | succ | pred | iszero | if e then e else e | (fn $x \Rightarrow e$) | (e e) | rec $x \Rightarrow e$ | let x = e1 in e2 end
- (1) $n \Rightarrow n$ for n an integer.
- (2) true \Rightarrow true, false \Rightarrow false
- (3) error \Rightarrow error
- (4) $succ \Rightarrow succ$, and similarly for the other initial functions

More PCF Semantics

More PCF Semantics

Recursion

Substitution-based Interpreter

data Term = AST_ID String | AST_NUM Int | AST_BOOL Bool | AST_SUCC | AST_PRED | AST_ISZERO | AST_IF (Term, Term, Term) | AST_ERROR String | AST_FUN (String, Term) | AST_APP (Term, Term) | AST_REC (String, Term)

- Key is to get right definition of substitution that matches static scope
- Interpreter code matches semantic rules
 - PCFSubstInterpreter.hs

PCF Semantics w/Environments

- Substitution slow & space consuming
- Can't handle terms w/free variables
- Environment allows to evaluate once.
- Meaning now separate set of values -- not just rewriting
- Meaning of function is closure, which carries around its environment of definition.

The Problem

• Program:

```
- y = 4

- f x = x + y

- g (h) = let y = 5 in (h 2) + y

- g(f)
```

• When evaluate (h 2), the needed y is out of scope!

Values of Answers

- Key difference w/ new interpreter
 - Update environment, not rewrite term!
 - Not destructive!
- Mutually recursive type definitions:

data Value = NUM Int | BOOL Bool | SUCC | PRED |

ISZERO | CLOSURE (String, Term, Env) |

THUNK (Term, Env) | ERROR (String, Value)

type Env = [(String, Value)]

Solving the Problem

• Program:

```
- y = 4

- f x = x + y

- g (h) = let y = 5 in (h 2) + y

- g(f)
```

- f evaluates to $\langle fn x = \rangle x+y, [y->_4] \rangle$
- g(f) partially evaluates to (h 2) + y in environment where env = [y->5, h-> <fn x => x+y, [y->4]>]

PCF Syntax & Semantics with Environments

More PCF Semantics

Revised PCF Semantics

(10)
$$((\operatorname{fn} \times => e), \operatorname{env}) \Rightarrow <\operatorname{fn} \times => e, \operatorname{env}>$$

$$(\operatorname{el},\operatorname{env}) \Rightarrow <\operatorname{fn} \times => e3, \operatorname{env'}> (\operatorname{e2}, \operatorname{env}) \Rightarrow \operatorname{v1}$$

$$(\operatorname{e3}, \operatorname{env'}[\operatorname{v1/x}]) \Rightarrow \operatorname{v}$$

$$((\operatorname{e1} e2), \operatorname{env}) \Rightarrow \operatorname{v} \quad \operatorname{Thunk}(\operatorname{rec} \times => e, \operatorname{env})$$

$$(\operatorname{e}, \operatorname{env}[(\operatorname{rec} \times => e)/x]) \Rightarrow \operatorname{v}$$

$$(\operatorname{ee}, \operatorname{env}[(\operatorname{rec} \times => e)/x]) \Rightarrow \operatorname{v}$$

$$((\operatorname{rec} \times => e), \operatorname{env}) \Rightarrow \operatorname{v}$$

See code on-line in PCFEnvInterpreter.hs

Computations on Machines

- Look at the following languages:
 - $E_{DFA} = \{\langle M \rangle \mid M \text{ is a DFA and } L(M) = \emptyset\}$ $EQ_{DFA} = \{\langle M, N \rangle \mid M \text{ and } N \text{ are DFAs and } L(M) = L(N)\}$ $A_{DFA} = \{\langle M, w \rangle \mid M \text{ is a DFA and } w \in L(M)\}$
- Showed before (informally) that these are decidable.
- Can do the same for PDA's.
 - First & third decidable, second is not!

What about TM's

- We'll see corresponding sets not decidable
 - and perhaps even not semi-decidable.
- Two more sets:
 - $H_{TM} = \{\langle M, w \rangle \mid M \text{ is a } TM \text{ which halts on input } w \}$ $TOTAL_{TM} = \{\langle M \rangle \mid M \text{ halts on all inputs} \}$
 - See later that neither is decidable.

Decision Problems with TM's

- Look at following sets:
 - $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } w \in L(M)\}$
 - $H_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM which halts on input w}\}$
 - TOTAL_{TM} = {M | M halts on all inputs}
 - $E_{TM} = \{M \mid M \text{ is a } TM \text{ and } L(M) = \emptyset\}$
- Halting easy for most, but:
 - times3(x: positive integer) =
 while x ≠ 1 do:
 If x is even then x = x/2.
 else x = 3x + 1

Universe of discourse

• Easy to determine if have encoding of a TM, so we'll ignore it when take complements, etc., so our universe of discourse will only consider those with valid TM encodings.

Semi-decidable

- A_{TM} and H_{TM} both semi-decidable using UTM.
- Show H_{TM} not decidable.
 - $\bullet \;\; Let \; E \; be \; candidate \; TM \; to \; decide \; H_{TM}. \;\; Show \; can't \; be \; right.$
 - From E, create TM D s.t. if input w, create <w,w> and simulate E on it (i.e, it treats input as if of form <M,w>)
 - If E rejects then make D accept and if E accepts, D loops forever
 - Now run D on <D>

Diagonal Argument

- If $\langle D,D \rangle \in H_{TM}$ then D halts on D, so E rejected $\langle D,D \rangle & \langle D,D \rangle \notin L(E)$
- If $\langle D,D \rangle \notin H_{TM}$ then D not halt on D, so E accepted, $\langle D,D \rangle \in L(E)$
- Either way, L(E) \neq H_{TM} with <D,D> in one but not other.

Decidable and Semidecidable

- *Earlier:* If L and its complement are both semi-decidable then it is decidable.
 - \bullet Corollary: Complement of H_{TM} is not semi-decidable
- Note, if H_{TM} were decidable then every SD language would be decidable.
- Lots of other languages not decidable:
 - L_o = {<M,w> | M on w eventually writes a o}
 - ...