Lecture 21: Writing
Interpreters

CSCI 101
Spring, 2019

Kim Bruce

With More Work ...

* Show anything computable by TM is
computable by lambda calculus ...

o or by RAM, or WHILE language, or ...

e ... and vice-versa!

Writing Interpreters

Natural (Operational) Semantics

* Arithmetic expressions example on web page

- Start w/parse tree: ArithSemantics.hs
* How to interpret identifiers?
e Environment: Association list of id’s & values.

* Semantics defined recursively on abstract
syntax trees.

PCF

e Programming language for Computable
Functions

* Includes recursive definitions
e Call-by-value (eager) semantics
* Function application as substitution

e Rewriting semantics

Semantics in English

* Semantics of succ e

- Evaluate expression e to value v

® return v+1

e Semantics of if b then el else e2

- Evaluate b

e if b evaluates to true return value of ex
otherwise return value of e2

PCF Syntax & Semantics

e ::=x | n | true | false | succ | pred | iszero |
if e then e else e | (fn x => e) | (e e) |
rec x => e | let x = el in e2 end

(1) n = n fornaninteger

(2) true = true, false = false

(3) error = error

(4) succ = succ, andsimilarly for the other initial functions

b = true el = v

(5) =——m e

if b then el else e2 = v

(8)

More PCF Semantics

el =pred e2 = (n+l)

(el e2) = n

el =iszero e2 = (n+l)

(el e2) = true (el e2) = false

More PCF Semantics

(10) (fn x => e) = (fn x => e)
el = (fn x => e3) e2 = vl e3[x:=vl] = v
(11) ————mmmme
(el e2) = Call by value!
e[x:=rec x => e] = Vv
(12) e
(rec x => e) = v
Like Y combinator!

Recursion

fn =if (n == 0) then 1 else n*(f(n-1)
is written in PCF (assuming have already defined mult) as

rec £ => fn n => if (isZero n) then 1
else mult n (f (pred n))

which is equivalent to
Y(Af. An. cond (isZero n) 1 (mult n (f (pred n))))

Computed via unwinding,.

Substitution-based Interpreter

data Term = AST_ID String | AST_NUM Int | AST_BOOL Bool
|AST_SUCCIAST_PRED | AST_ISZERO
| AST_IF (Term, Term, Term) | AST_ERROR String
| AST_FUN (String, Term) | AST_APP (Term, Term)
| AST_REC (String, Term)

* Key is to get right definition of substitution
that matches static scope

e Interpreter code matches semantic rules

- PCFSubstInterpreter.hs

PCF Semantics w/Environments

* Substitution slow & space consuming
e Can’t handle terms w/free variables
e Environment allows to evaluate once.

e Meaning now separate set of values -~ not just
rewriting

* Meaning of function is closure, which carries
around its environment of definition.

The Problem

e Program:
TY=4
- fx=x+y
-g)=lety=5inh2) +y
- g®

* When evaluate (h 2), the needed y is out of
scope!

Values of Answers

* Key difference w/ new interpreter
- Update environment, not rewrite term!

- Not destructive!

* Mutually recursive type definitions:
data Value = NUM Int | BOOL Bool | SUCC | PRED |
ISZERO | CLOSURE (String, Term, Env) |
THUNK (Term, Env) | ERROR (String, Value)
type Env = [(String, Value)}

Solving the Problem

e Program:
-y=4
- fx-x+y
-g)=lety=5in(h2) +y
- g®

* f evaluates to <fn x => x+y, [y->41>

o o(f) partially evaluates to (h 2) +y in environment

where env = [y->5, h-> <fn x => x+y, [y->41>}

env::

(0)

PCF Syntax & Semantics
with Environments

string -> value

(id, env) = env(id)

(n, env) = n formnaninteger.

(true, env) = true, (false, e) = false

(error, env) = error

(succ, env) = succ, similarly for other initial functions

(b, env) = true (el, env) = v

(if b then el else e2, env) = v

More PCF Semantics

(10)

(12)

Revised PCF Semantics

Closure(x,e,env)

((fn x => e), env) = <fn x => e, env>

(el,env) = <fn x => e3, env’'> (e2, env) = vl

(e3, env’'[vl/x]) = Vv

((el e2), env) = v Thunk(rec x => e, env)

(e, env[(rec x => e)/x]) = v

((rec x => e), env) = v

See code on-line in

PCFEnvInterpreter.hs

Computations on Machines

* Look at the following languages:

¢ Epra ={<M> | M is a DFA and LOM)=&}
EQpra = {{M,N) | M and N are DFAs and L(M) = L(N)}
Apra = {M,w) | M is a DFA and w €EL(M)}

* Showed before (informally) that these are
decidable.

e Can do the same for PDA’s.

¢ First & third decidable, second is not!

What about TM’s

* We'll see corresponding sets not decidable
e and perhaps even not semi-decidable.
e Two more sets:

e Hpm = {{M,w) | M is a TM which halts on input w}
TOTALTMm = {<M> | M halts on all inputs}

o See later that neither is decidable.

Decision Problems with TM’s

* Look at following sets:
o Arm = {M,w) | MisaTM and w € LOM)}
o Hrum = {M,w) | M is a TM which halts on input w}
* TOTALrym = {M | M halts on all inputs}
o Erm =M |M is a TM and LOM)=C}

 Halting easy for most, but:

* times3(x: positive integer) =
while x # 1 do:
If x is even then x = x/2.
elsex=3x+1

Universe of discourse

e Easy to determine if have encoding of a TM, so
we’ll ignore it when take complements, etc., so
our universe of discourse will only consider
those with valid TM encodings.

Semi-decidable

* Arm and Hym both semi-decidable using UTM.

* Show Hrm not decidable.
o Let E be candidate TM to decide Hrm. Show can’t be right.

o From E, create TM D s.t. if input w, create <w;w> and simulate
E on it G.e, 7 treats input as if of form <M, w>)

e If E rejects then make D accept and if E accepts, D loops forever

e Now run D on <D> Diagonal Argument
e If <DD> &€ Hrm then D halts on D, so E rejected <D,D> & <D,D> & L(E)
e If<D,D> ¢ Hrwm then D not halt on D, so E accepted, <D,D> € L(E)

o Either way, L(E) #* Hry with <D,D> in one but not other.

Decidable and Semi-
decidable

e Earlier: If L and its complement are both semi-

decidable then it is decidable.

e Corollary: Complement of Hru is not semi-decidable

* Note, if Htm were decidable then every SD
language would be decidable.

e Lots of other languages not decidable:

e L, ={<M,w>|M on w eventually writes a o}

