Lecture 2: Finite State Machines

CSCI 101 Spring, 2019 Kim Bruce TA's:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen, Alice Tan

Course web page: <u>http://www.cs.pomona.edu/classes/cs101</u>

Mentor Office Hours

- Start nSunday outside of my office:
 - SMTW: 8 to 10 p.m., 112 Edmunds

Homework

- Now available on line
 - Second problem has lots of parts
 - Turn in single file
- Can use JFLAP to create automata
 - See tutorial on-line you must read it!
 - Save as gif and then open and save as pdf (e.g., using Preview on Mac)
 - \includegraphics{myfile.pdf} to insert in LaTeX file.

Homework Grading

- Uses gradescope
 - Log in at https://www.gradescope.com/courses/36442
 - Turn in pdf written using LaTeX
 - Each problem must use specified number of pages or grader won't find it!
 - We will have several mentors grading at once and it will serve each only the pages for the program being graded!
 - Sample Hmwk o that gives points for trivial questions submitted properly!

Deterministic Finite State Machine

- A FSM (or DFSM) is a quintuple (K, Σ , δ , s, A)
 - K is a finite set of states
 - Σ is a finite input alphabet
 - $s \in K$ is the start state
 - $A \subseteq K$ is set of accepting (or final) states
 - $\delta: K \times \Sigma \rightarrow K$ is transition function
- Simple model of real computer
 - finite memory

Example

Review: Computations

- \bullet Single step of M uses δ to process next character:
 - $(q_1,c_W) \vdash_M (q_2,w)$ iff $\delta(q_1,c) = q_2$
- \vdash_{M}^{*} is reflexive, transitive closure
 - (q₁,u) ⊢_M* (q₂,w) means get from first to second in 0 or more steps

Defining Language

- M accepts string w iff there is $q \in A$ s.t. (s,w) $\vdash_M^* (q,\epsilon)$
- M rejects string w iff there is $q \notin A$ s.t. (s,w) $\vdash_M^* (q,\epsilon)$
- $L(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$
- L is regular if it is *L*(M) for some finite state machine M

Proof by induction

• Simple: To prove for all n ≥ k, H(n), where H(n) is a proposition that may be true or false

typically k is o or 1

- Prove base case: H(k)
- Prove induction case: if, for some n ≥ k, H(k) holds then prove H(k+1)
- Course-of-values: To prove for all $n \ge k$, H(n)
 - Let $n \ge k$. Suppose that for all m < n, H(m) holds, then prove H(n)

Example

- Prove $2^n > n^2$ for all $n \ge 5$.
- Base case (n = 5) Show $2^5 > 5^2$
- Induction case: Suppose for some $k \ge 5$, $2^k > k^2$
 - Show $2^{k+1} > (k+1)^2$.
 - We'll assume $k^2 > 2k + 1$ for $k \ge 5$, but could prove it by induction!

Proving FSM is correct

- For each state of FSM, specify invariant.
- By induction on number of steps in computation, prove for all n, after n steps, if the computation is in state q, then invariant for q holds.
- Make sure invariants of final states imply correctness.

Example

• Draw FSM for w contains at least 2 b's.

Set Up Proof

- Invariants:
 - qo: No b's have been read in so far
 - q1: Exactly one b has been read in so far
 - q2: At least 2 b's have been read in so far
- Base case: n = o:
 - If in state q0 after 0 steps then no b's have been read in
 - If in state $q\tau$ after 0 steps then one b has been read in
 - If in state q1 after 0 steps then at least 2 b's have been read in

Can't happen!!

Induction step

- Induction hypothesis H(n):
 - After n steps, if the computation is in state q, then invariant for q holds.
- Induction: Show if H(n) holds for some n ≥ 0, then H(n+1) holds.
 - Could go from H(n-1) to H(n) if $n \ge 1$ instead

Closure Properties

- Regular languages are closed under:
 - Complementation Σ^* L (change final set)
 - Intersection $L_1 \cap L_2$ (product machine)
 - + Union $L_{\scriptscriptstyle I} \cup L_{\scriptscriptstyle 2}(\text{deMorgan laws or variant of product})$
- How about concatenation?
 - $L_{I} \parallel L_{2}$
 - Can't just put transitions from final of L1 to start of L2!
 - Also want L*

Intersection

- If $M_{I} = (K_{I}, \Sigma, \delta_{I}, s_{I}, A_{I}), M_{2} = (K_{2}, \Sigma, \delta_{2}, s_{2}, A_{2})$ then let $M = (K_{I} \times K_{2}, \Sigma, \delta, \langle s_{I}, s_{2}\rangle, A_{I} \times A_{2})$
 - where $\delta(<q_1,q_1'>,a) = <q_2, q_2'>$ if $\delta_1(q_1,a) = q_2 & \delta_2(q_1',a) = q_2'$
- Then $L(\mathbf{M}) = L(\mathbf{M}_1) \cap L(\mathbf{M}_2)$

Nondeterministic Finite State Machine

- An NDFSM is a quintuple (K, Σ , Δ , s, A)
 - K is a finite set of states
 - Σ is a finite input alphabet
 - $s \in K$ is the start state
 - $A \subseteq K$ is set of accepting (or final) states
 - $\Delta \subseteq K \times (\Sigma \cup \{\epsilon\}) \times K$ is a finite transition relation
- Can have multiple or no transitions
- ɛ-moves as well

Example

NDSM Computations

- Let $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- Single step of M uses Δ to process next character (or nothing):
 - $(q_1,cw) \vdash_M (q_2,w)$ iff $((q_1,c), q_2) \in \Delta$, for $c \in \Sigma$
 - $(q_1,w) \vdash_M (q_2,w)$ iff $((q_1,\epsilon), q_2) \in \Delta$ (\$\epsilon\$-move)
- Initial and accepting configurations and computations defined as before.

NDSM Computations

- NDSM accepts a word w if at least one of its computations accepts
 - Always guesses right path if there is one!
- Why NDSM's?
 - Easier to design!
 - But how to implement?

NFSM ≈ DFSM

- Each DFSM is clearly NFSM
 - Just make result of transition into relation
- Other direction uses sets of states
- Define $eps(q) = \{ q' \in K \mid (q, \varepsilon) \vdash^* (q', \varepsilon) \}$
 - All states reachable via ε -moves from q

$NFSM \Rightarrow DFSM$

- Let $M = (K, \Sigma, \Delta, s, A_N)$ be an NFSM.
- Construct DFSM M' = (K' , Σ , δ_D , *eps*(s), A_D) where
 - K' = P(K)
 - $\delta_D(Q,c) = \bigcup \{eps(p) \mid \exists q \in Q. (q, c, p) \in \Delta \}$ for $Q \in P(K)$
 - $A_D = \{ R \subseteq K \mid R \cap A_N \neq \emptyset \}$, i.e., R has a final state
- Show L(M) = L(M')

Example

Proof

- Lemma: Let $w \in \Sigma^*$, p, $q \in K$, $P \in K'$. Then $(q,w) \vdash_M^* (p,\epsilon)$ iff $(eps(q), w) \vdash_{M'}^* (P,\epsilon) \& p \in P$
- Assume lemma. Then w∈L(M) iff (s,w) ⊢_M* (p,ε) for p∈A_N iff (eps(s),w) ⊢_{M'}* (P,ε) for p∈ P, p∈A_N iff (eps(s),w) ⊢_{M'}* (P,ε) where P∈A_D iff w∈L(M')
 Now prove lemma by induction on |w|

iff by Lemma

Base cases

- Show $(q,w) \vdash_M^* (p,\epsilon) \text{ iff } (eps(q), w) \vdash_{M'}^* (P,\epsilon) \& p \in P$
 - By induction on length of w.
- Let |w| = 0. Thus $w = \varepsilon$
 - (\Rightarrow) Suppose (q, ε) \vdash_{M}^{*} (p, ε). Then p $\in eps(q)$.
 - Thus $(eps(q), \varepsilon) \vdash_{M}^{*} (eps(q), \varepsilon) \& p \in eps(q)$. So let P = eps(q).
 - (\Leftarrow) Suppose ($eps(q), \varepsilon$) $\vdash_{M'}^* (P,\varepsilon) \& p \in P$.
 - Then P must be eps(q), and by def of eps, $p \in P$ implies $(q, \epsilon) \vdash_M^*(p, \epsilon)$

Induction case

Show $(q,w) \vdash_{M} * (p,\epsilon)$ iff $(eps(q), w) \vdash_{M} * (P,\epsilon) \& p \in P$

• Suppose true for v s.t. |v| = n. Let w = za for z s.t. |z| = n

by def of A_D

 $\begin{array}{l} (\Rightarrow) \ \, Suppose \ \, (q,za) \vdash_{M}^{*} (p,\epsilon) \ \, where \\ (q,za) \vdash_{M}^{*} (p',a) \ \, \& \ (p',a) \vdash_{M} (p'',\epsilon) \ \, \& \ (p'', \epsilon) \vdash_{M} (p,\epsilon) \end{array}$

Therefore $(q,z) \vdash_M^* (p', \varepsilon) \& p \in eps(p'')$ By induction $\exists P \text{ s.t. } (eps(q), z) \vdash_{M^*} (P', \varepsilon) \& p' \in P' \& \text{thus } (eps(q), za) \vdash_{M'} (P', a) \& p' \in P'$ By def of M', (P', a) $\vdash_{M'} (P, \varepsilon)$ for $P = \cup \{eps(r) \mid \exists q \in Q. ((q, a), r) \in \Delta\}$ By above, $((p',a), p'') \in \Delta \& p \in eps(p'')$. Therefore $p \in P$

Thus (eps(q), za) $\vdash_{M'} (P, \epsilon)$ for $p \in P$.

Closure Revisited

• Union:

- Make sets of states disjoint, add new start w/ɛ moves to starts of original. Final states union of original finals
- Concatenation:
 - From each final state of first, add ϵ move to start of second. Final states are only those of second.

Exercise

• If L is regular, show that L* is regular.

Minimizing FSM

- Useful for implementing in hardware
- Given regular L, is there a minimal FSM accepting it?
- Is it unique?
- Can we construct it?

Equivalence relations

- ≈ is equivalence class iff reflexive, symmetric, transitive.
- \approx is right regular iff $x \approx y \Rightarrow xa \approx ya$ for all $a \in \Sigma$
- Ex. Let M be FSM over Σ. Then define x ≈_M y iff δ_M(s,x) = δ_M(s,y). ≈ is right-regular
- Equivalence class: $[\mathbf{w}] = {\mathbf{w}' \in \Sigma^* | \mathbf{w} \approx \mathbf{w}'}$
 - In example, equiv class is all w going to same state q.
- Then L(M) is union of equivalence classes.

Minimizing FSM

- Def: x, y are *indistinguishable* wrt L, x ≈_L y iff for all z ∈ Σ*, either both xz, yz ∈ L or neither is
 - Ex: if L = {w ∈ Σ* | w does not contain aab as a substring} then a and baba indistinguishable, but a and ab not.
- \approx_L is right regular equivalence relation
- States of new minimal machine will be equivalence classes: [w] = {v ∈ Σ* | v ≈_L w}

Example equiv classes

Observations

- No equiv class contains both $u \in L$ and $v \notin L$.
- If strings go to dead state, then all in same class
- More than one equiv class can contain elts of L
- If M is DFSM & q is state, then all strings going to state q are in same equiv. class
- If L = *L*(M) then # equiv classes of L ≤ # states of M
 - Thus, if L is regular, then # equiv classes of L is finite.

Non-Regular Languages

- Some language have ∞ # of equiv classes
 - $P = \{ww^R | w \in \{a,b\}^*\}$
 - [b], [ab], [aab], [aaab], ... all distinct
 - Thus P not regular.

Construct Minimal DFSM

Theorem: Let L be a regular language over some alphabet Σ . Then there is a DFSM M that accepts L and that has precisely n states where n is the number of equivalence classes of L. Any other FSM that accepts L must either have more states than M or it must be equivalent to M except for state names.

But how do we find equivalence classes? See homework!

Proof

Let M = (K, Σ , δ , s, A), where:

- K consists of the n equivalence classes of L.
- s = $[\varepsilon]$, the equivalence class of ε under L.
- $A = \{[x] : x \in L\}$. Well-defined!
- $\delta([x], a) = [xa]$. Well-defined because right regular.
- Show L = *L*(M) and unique minimal *Example*