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Mentor Office Hours

• Start nSunday outside of my office:

• SMTW: 8 to 10 p.m., 112 Edmunds

Homework

• Now available on line

• Second problem has lots of parts

• Turn in single file

• Can use JFLAP to create automata

• See tutorial on-line - you must read it!

• Save as gif and then open and save as pdf (e.g., using 
Preview on Mac)

• \includegraphics{myfile.pdf} to insert in LaTeX file.

Homework Grading

• Uses gradescope

• Log in at https://www.gradescope.com/courses/36442

• Turn in pdf written using LaTeX

• Each problem must use specified number of pages or 
grader won’t find it!

• We will have several mentors grading at once and it will serve each only the 
pages for the program being graded!

• Sample Hmwk 0 that gives points for trivial questions submitted properly!



Deterministic Finite State 
Machine

• A FSM (or DFSM) is a quintuple (K, Σ, δ, s, A)

• K is a finite set of states

• Σ is a finite input alphabet

• s ∈ K is the start state

• A ⊆ K is set of accepting (or final) states

• δ: K × Σ → K is transition function

• Simple model of real computer

• finite memory Example

Review: Computations

• Single step of M uses δ to process next character:

• (q1,cw) ⊢M (q2,w) iff δ(q1,c) = q2

• ⊢M* is reflexive, transitive closure

• (q1,u) ⊢M* (q2,w) means get from first to second in 0 or 
more steps

Defining Language

• M accepts string w iff  
                  there is q ∈ A s.t. (s,w) ⊢M* (q,ε)

• M rejects string w iff  
                  there is q ∉ A s.t. (s,w) ⊢M* (q,ε)

• L(M) = { w ∈ Σ* | M accepts w }

• L is regular if it is L(M) for some finite state 
machine M

Proof by induction

• Simple:  To prove for all n ≥ k, H(n), where 
H(n) is a proposition that may be true or false

• Prove base case: H(k)

• Prove induction case: if, for some n ≥ k, H(k) holds then 
prove H(k+1)

• Course-of-values: To prove for all n ≥ k, H(n)

• Let n ≥ k.  Suppose that for all m < n, H(m) holds, then 
prove H(n)

typically k is 0 or 1



Example

• Prove 2n > n2 for all n ≥ 5.

• Base case (n = 5)  Show 25 > 52

• Induction case: Suppose for some k ≥ 5, 2k > k2

• Show 2k+1 > (k+1)2.

• We’ll assume k2 > 2k + 1 for k ≥ 5, but could prove it by induction!

Proving FSM is correct

• For each state of FSM, specify invariant.

• By induction on number of steps in 
computation, prove for all n, after n steps, if 
the computation is in state q, then invariant for 
q holds.

• Make sure invariants of final states imply 
correctness.

Example

• Draw FSM for w contains at least 2 b’s.

Set Up Proof
• Invariants:

• q0: No b’s have been read in so far

• q1: Exactly one b has been read in so far

• q2:  At least 2 b’s have been read in so far

• Base case: n = 0: 

• If in state q0 after 0 steps then no b’s have been read in

•  If in state q1 after 0 steps then one b has been read in

• If in state q1 after 0 steps then at least 2 b’s have been 
read in

Can’t happen!!



Induction step

• Induction hypothesis H(n): 

• After n steps, if the computation is in state q, then 
invariant for q holds. 

• Induction:  Show if H(n) holds for some n ≥ 0, 
then H(n+1) holds.

• Could go from H(n-1) to H(n) if n ≥ 1 instead

Closure Properties

• Regular languages are closed under:

• Complementation Σ* - L      (change final set)

• Intersection L1 ∩ L2         (product machine)

• Union L1 ∪ L2 (deMorgan laws or variant of product)

• How about concatenation?

• L1 || L2 

• Can’t just put transitions from final of L1 to start of L2!

• Also want L*

Intersection

• If M1 = (K1, Σ, δ1, s1, A1), M2 = (K2, Σ, δ2, s2, A2) 
then let M = (K1 × K2, Σ, δ, <s1, s2>, A1 × A2)

• where δ(<q1,q1’>,a) = <q2, q2’> 
          if δ1(q1,a) = q2 & δ2(q1’,a) = q2’

• Then L(M) = L(M1) ∩ L(M2)

Nondeterministic Finite State 
Machine

• An NDFSM is a quintuple (K, Σ, Δ, s, A)

• K is a finite set of states

• Σ is a finite input alphabet

• s ∈ K is the start state

• A ⊆ K is set of accepting (or final) states

• Δ ⊆ K × (Σ ∪ {ε}) × K is a finite transition relation

• Can have multiple or no transitions

• ε-moves as well Example



NDSM Computations

• Let Σε = Σ ∪ {ε}

• Single step of M uses Δ to process next 
character (or nothing):

• (q1,cw) ⊢M (q2,w) iff ((q1,c), q2) ∈ Δ,    for c ε Σ

• (q1,w) ⊢M (q2,w) iff ((q1,ε), q2) ∈ Δ        (ε-move)

• Initial and accepting configurations and 
computations defined as before.

NDSM Computations

• NDSM accepts a word w if at least one of its 
computations accepts

• Always guesses right path if there is one!

• Why NDSM’s?

• Easier to design!

• But how to implement?

NFSM ≈ DFSM

• Each DFSM is clearly NFSM

• Just make result of transition into relation

• Other direction uses sets of states

• Define eps(q) = { q’ ∈ K | (q,ε)⊢* (q’,ε) }

• All states reachable via ε-moves from q

NFSM ⇒ DFSM

• Let M = (K, Σ, Δ, s, AN) be an NFSM.

• Construct DFSM M’ = (K’ , Σ, δD, eps(s), AD) 
where

• K’ = P(K)

• δD(Q,c) = ∪{eps(p) | ∃q∈Q. (q, c, p) ∈ Δ}  for Q ∈ P(K)

• AD = {R ⊆ K | R ∩ AN ̸≠ ∅ }, i.e., R has a final state

• Show L(M) = L(M’)

Example



Proof 

• Lemma:  Let w ∈ Σ*, p, q ∈ K, P ∈ K’.  Then 
  (q,w) ⊢M* (p,ε) iff (eps(q), w) ⊢M’* (P,ε) & p ∈ P

• Assume lemma.  Then  
w ∈ L(M) iff (s,w) ⊢M* (p,ε) for p ∈ AN  

iff (eps(s),w) ⊢M’* (P,ε) for p ∈ P, p ∈ AN  

iff (eps(s),w) ⊢M’* (P,ε) where P ∈ AD 

iff w ∈ L(M’)

• Now prove lemma by induction on |w|
iff by Lemma by def of  AD

Base cases

• Show 
    (q,w) ⊢M* (p,ε) iff (eps(q), w) ⊢M’* (P,ε) & p ∈ P

• By induction on length of w.

• Let |w| = 0.  Thus w = ε

• (⇒) Suppose (q, ε) ⊢M* (p,ε).  Then p ∈ eps(q).

• Thus (eps(q), ε) ⊢M’* (eps(q),ε) & p ∈ eps(q).   So let P = eps(q). ✔

• (⇐) Suppose (eps(q), ε) ⊢M’* (P,ε) & p ∈ P.

• Then P must be eps(q), and by def of eps,  
        p ∈ P implies (q, ε) ⊢M* (p,ε)   ✔

Induction case

• Suppose true for v s.t. |v| = n.  Let w = za for z s.t. |z| = n
(⇒)  Suppose (q,za) ⊢M* (p,ε) where 
 (q,za) ⊢M* (p’,a) & (p’,a) ⊢M (p’’,ε) & (p’’, ε) ⊢M (p,ε)

Therefore (q,z) ⊢M* (p’, ε) & p ∈ eps(p’’) 
By induction ∃P s.t. (eps(q), z) ⊢M’* (P’,ε) & p’ ∈ P’ &  
                                  thus (eps(q), za) ⊢M’* (P’, a) & p’ ∈ P’ 
By def of M’, (P’, a) ⊢M’ (P, ε) for  
                       P = ∪{eps(r) | ∃q∈Q. ((q, a), r) ∈ Δ} 
By above, ((p’,a), p’’) ∈ Δ & p ∈ eps(p’’).  Therefore p ∈ P

Thus (eps(q), za) ⊢M’* (P,ε) for p ∈ P.   ✔

Show (q,w) ⊢M* (p,ε) iff (eps(q), w) ⊢M’* (P,ε) & p ∈ P
Closure Revisited

• Union:

• Make sets of states disjoint, add new start w/ε moves to 
starts of original.  Final states union of original finals

• Concatenation:

• From each final state of first, add ε move to start of 
second.  Final states are only those of second.



Exercise

• If L is regular, show that L* is regular.

Minimizing FSM

• Useful for implementing in hardware

• Given regular L, is there a minimal FSM 
accepting it?

• Is it unique?

• Can we construct it?

Equivalence relations

• ≈ is equivalence class iff reflexive, symmetric, 
transitive.

• ≈ is right regular iff x ≈ y ⇒ xa ≈ ya for all a ∈ Σ

• Ex.  Let M be FSM over Σ.  Then define 
x ≈M y iff δM(s,x) = δM(s,y).  ≈ is right-regular

• Equivalence class: [w] = {w’ ∈ Σ* | w ≈ w’}

• In example, equiv class is all w going to same state q.

• Then L(M) is union of equivalence classes.

Minimizing FSM

• Def:  x, y are indistinguishable wrt L, x ≈L y iff  
for all z ∈ Σ*, either both xz, yz ∈ L or neither is

• Ex: if L = {w ∈ Σ∗ | w does not contain aab as a substring} 
then a and baba indistinguishable, but a and ab not.

• ≈L is right regular equivalence relation

• States of new minimal machine will be 
equivalence classes:  [w] = {v ∈ Σ* | v ≈L w}

Example equiv classes



Observations

• No equiv class contains both u ∈ L and v ∉ L.

• If strings go to dead state, then all in same class

• More than one equiv class can contain elts of L

• If M is DFSM & q is state, then all strings going 
to state q are in same equiv. class

• If L = L(M) then  
       # equiv classes of L ≤ # states of M

• Thus, if L is regular, then # equiv classes of L is finite.

Non-Regular Languages

• Some language have ∞ # of equiv classes

• P = {wwR | w ∈ {a,b}* }

• [b], [ab], [aab], [aaab], ... all distinct

• Thus P not regular.

Construct Minimal DFSM

Theorem:  Let L be a regular language over some 
alphabet Σ.  Then there is a DFSM M that 
accepts L and that has precisely n states where n 
is the number of equivalence classes of L.  Any 
other FSM that accepts L must either have more 
states than M or it must be equivalent to M 
except for state names. 

But how do we find equivalence classes?
See homework!

Proof

Let M = (K, Σ, δ, s, A), where: 

    ● K consists of the n equivalence classes of  L.

    ● s = [ε], the equivalence class of ε under L.

    ● A = {[x] : x ∈ L}.  Well-defined!

    ● δ([x], a) = [xa].  Well-defined because right regular.

Show L = L(M) and unique minimal
Example


