Mentor Office Hours

Lecture 2: Finite State

Machines

CSCI 101
Spring, 2019 e SMTW:- 8 to 10 p.m., 112 Edmunds

* Start nSunday outside of my office:

Kim Bruce

TAS:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen,
Alice Tan

Course web page: bttp.//www.cs pomona.edu/classes/csTor

Homework Homework Grading

* Now available on line
* Uses gradescope
* Second problem has lots of parts
* Log in at https://www.gradescope.com/courses/36442
e Turn in single file
e Turn in pdf written using LaTeX
* Can use JFLAP to create automata

J e Each problem must use specified number of pages or

o See tutorial on-line - you must read it! grader won’t find it!

o Save as gif and then open and save as pdf (e.g., using ’ Z;Z}{olrb ;Z;fff;::%ﬁf;g,%ﬁf 88 once and ¢ will erve aach only the

Preview on Mac)
o Sample Hmwk o that gives points for trivial questions submitted properly!

* \includegraphics{myfile.pdf} to insert in LaTeX file.




Deterministic Finite State

Machine
* AFSM (or DFSM) is a quintuple (K, Z, 9, s, A)
e K is a finite set of states
e X is a finite input alphabet
e s € K is the start state
o A CKis set of accepting (or final) states

e §: K x X — K is transition function

Review: Computations

* Single step of M uses 0 to process next character:

* (q,ew) M (qz,w) iff 8(qy,0) = q.

* ™ is reflexive, transitive closure

* (qi,u) Fum* (q2,w) means get from first to second in 0 or

more Steps
e Simple model of real computer
* finite memory Examp /e
Defining Language Proof by induction

* M accepts string w ift
there is q € A s.t. (s,w) —m* (q,€)

* M rejects string w iff
there is q € A s.t. (s,w) —m* (q,€)

°* L(M) ={w € Z*| M accepts w}

e L is regular if it is LOM) for some finite state
machine M

* Simple: To prove for all n > k, H(n), where

H(n) is a proposition that may be true or false
typically k is 0 or 1
o Prove base case: H(k)

e Prove induction case: if, for some n > k, H(k) holds then
prove H(k+1)

* Course-of-values: To prove for all n > k, H(n)

e Let n 2 k. Suppose that for all m < n, H(m) holds, then
prove H(n)




Example

e Prove 20 > n2 foralln > 3.
* Base case (n=5) Show 25 > 52

e Induction case: Suppose for some k > §, 2k > k2

e Show 2k+1 > (k+1)2.

o We'll assume k2> 2k + 1 for k > 5, but could prove it by induction!

Proving FSM is correct

* For each state of FSM, specify invariant.

¢ By induction on number of steps in
computation, prove for all n, after n steps, if
the computation is in state q, then invariant for

q holds.

e Make sure invariants of final states imply
correctness.

Example

® Draw FSM for w contains at least 2 b’s.

Set Up Proof

e Invariants:
* qo: No b’s have been read in so far
* qn: Exactly one b has been read in so far

® q2: At least 2 b’s have been read in so far

* Base case: n = o:
e If in state qo after o steps then no b’s have been read in

e Ifin state q1 after o steps then one b has been read in

e Ifin state qr after o steps the b’s have been
read in -_—

Can'’t bappen!!




Induction step

* Induction hypothesis H(n):

o After n steps, if the computation is in state g, then
invariant for q holds.

e Induction: Show if H(n) holds for some n > o,
then H(n+1) holds.

* Could go from H(n-1) to H@) if n > 1 instead

Closure Properties

* Regular languages are closed under:

e Complementation 2*-L  (change final set)

Intersection L; N L,  (product machine)

e Union L; U L, (deMorgan laws or variant of product)

e How about concatenation?

L IIL,

o Can't just put transitions from final of Lt to start of L2!

e Also want L*

Intersection

hd If MI = (KI, 2, 61, SI, AI), Mz = (Kz, 2, 62, Sz, Az)
thel’l Iet M = (KI X Kz, 2, 6, <SI, Sz>, AI X Az)

* where 8(<q;,q:">,a) = <5, @.">
if 8:(qu,2 = q. & 0.(q/,@) = @2’

° Then L(M) = L(MI) N L(Mz)

Nondeterministic Finite State

Machine

e An NDFSM is a quintuple (K, =, A, s, A)

K is a finite set of states

2 is a finite input alphabet

s € K is the start state

A C K is set of accepting (or final) states

A CK x (Z U {e)) x K is a finite transition relation

* Can have multiple or no transitions

* e-moves as well Example




NDSM Computations

.Let28=ZU{8}

* Single step of M uses A to process next
character (or nothing):

o (qu,ew) Fum (qew) iff (q1,0), @) EA, forceX

e (q,w) Fum (q.,w) iff (qy,®), g») €E A (e-move)

* Initial and accepting configurations and
computations defined as before.

NDSM Computations

* NDSM accepts a word w if at least one of its
computations accepts

o Always guesses right path if there is one!

o Why NDSM’s?
 Easier to design!

* But how to implement?

NFSM = DFSM

* Each DFSM is clearly NFSM

o Just make result of transition into relation
e Other direction uses sets of states
e Define ¢ps(q) ={ ¢’ €K I (q,©)-* (q,e) }

e All states reachable via e-moves from q

NFSM = DFSM

eLet M=(K, 2, A, s, AN) be an NFSM.

* Construct DFSM M’ = (K, Z, dp, eps(s), Ap)
where
e K'=P(K)
e dp(Q,0) = Uleps(p) | IqEQ. (q, ¢, p) € A} for Q € P(K)

e Ap={RCKIRNAN=#J},i.e., R has a final state
e Show L(M) = L(M’)

Example




Proof

e Lemma: Letw€&€ 2* p,q €K, PEK’. Then
(q,w) Fm* (p,e) iff (eps(@), w) -m* (Pe) & p EP

* Assume lemma. Then
w € LM iff (s,w) Fm* (p,e) for p € An
iff (eps(s),w) Far* (Pe) forp EP, p E An
iff (eps(s),w) m* (Pe) where P € Ap
iff we L(W)

* Now prove lemma by induction on wl

iff by Lemma by def of Ap

Base cases

* Show
(q,w) Fum* (p,e) iff (eps(q@), w) Fm* (Pe) & p EP

o By induction on length of w.

* Letlwl=0. Thusw=¢
* (=) Suppose (q, &) Fm* (p,e). Then p € eps(@).
e Thus (gps(q), &) Fm* (eps(q),e) & p Eeps(q). So let P = eps(q). v/
e (<) Suppose (eps(@), &) —m* (Pe) & p EP.

e Then P must be eps(q), and by def of ¢ps,
p € P implies (q, & Fm* (p,e) ¢

Induction case
Show (q,w) —um* (p,e) iff (eps(q), w) —m* (Pe) & p EP

* Suppose true for vs.t. vl=n. Letw==zaforzs.t.lzl=n

(=) Suppose (q,za) -u* (p,e) where
(q,za) —m* () & (p’,a) Fum (p”,8) & (p”, &) Fum (p,e)

Therefore (q,2) Fum* (p’, &) & p € eps(p”)
By induction 3P s.t. (eps(q), 2) Fm* (Pe) & p' EP’ &
thus (eps(q), za) Fm* (P, 2 & p’ EP’
By def of M, (P, a) -mr (P, &) for
P = Uleps(0) 1 3q€Q. ((q, @), ) € A}
By above, ((p’,a), p”) € A & p € eps(p”). Therefore p € P

Thus (eps(@), za) —m* (Be) forpEP. v/

Closure Revisited

e Union:

e Make sets of states disjoint, add new start w/e moves to
starts of original. Final states union of original finals

e Concatenation:

¢ From each final state of first, add € move to start of
second. Final states are only those of second.




Exercise

e If L is regular, show that L* is regular.

Minimizing FSM

e Useful for implementing in hardware

* Given regular L, is there a minimal FSM
accepting it?

e Is it unique?

e Can we construct it?

Equivalence relations
* =~ is equivalence class iff reflexive, symmetric,
transitive.
* ~jsright regulariff x~y=xa=yaforallaE X

e Ex. Let M be FSM over Z. Then define
x =M y iff dm(s,x) = dm(s,y). = is right-regular

* Equivalence class: {w} = {w’ € Z* | w = w'}

o In example, equiv class is all w going to same state q.

* Then L(M) is union of equivalence classes.

Minimizing FSM

* Def: x,y are indistinguishable wrt L, x =1 y iff
for all z € =¥, either both xz, yz € L or neither is

e Ex: if L = {w € Z* | w does not contain aab as a substring}
then a and baba indistinguishable, but a and ab not.

* ~, is right regular equivalence relation
e States of new minimal machine will be

equivalence classes: {w}={v & Z*|v = w}

Example equiv classes




Observations

e No equiv class contains both u € L and v & L.
* If strings go to dead state, then all in same class
e More than one equiv class can contain elts of L

* If M is DFSM & q is state, then all strings going
to state q are in same equiv. class

o If L = L(M) then
# equiv classes of L < # states of M

e Thus, if L is regular, then # equiv classes of L is finite.

Non-Regular Languages

* Some language have o # of equiv classes
e P-{wwRlw€&E{ab}*}
e [b], [ab], [aab], [aaab], ... all distinct

e Thus P not regular.

Construct Minimal DFSM

Theorem: Let L be a regular language over some
alphabet Z. Then there is a DFSM M that
accepts L and that has precisely n states where n
is the number of equivalence classes of L. Any
other FSM that accepts L must either have more
states than M or it must be equivalent to M
except for state names.

But how do we find equivalence classes?
See homework!

Proof

Let M= (K, X, §, s, A), where:
e K consists of the n equivalence classes of L.
e s = ¢}, the equivalence class of € under L.
o A={[xl:xE L}. Well-defined!
o 8(xl, @) = [xal. Well-defined because right regular.

Show L = L(M) and unique minimal
Example




