Mentor Office Hours

Lecture 2: Finite State Machines

CSCI ior
Spring, 2019
Kim Bruce
TAs: Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen, Alice Tan

Course web page: http://wwwe.cs.pomona.edu/classes/csIoI

Homework

- Now available on line
- Second problem has lots of parts
- Turn in single file
- Can use JFLAP to create automata
- See tutorial on-line - you must read it!
- Save as gif and then open and save as pdf (e.g., using Preview on Mac)
- Includegraphics\{myfile.pdff to insert in LaTeX file.
- Start nSunday outside of my office:
- SMTW: 8 to io p.m., in2 Edmunds

Homework Grading

- Uses gradescope
- Log in at https://www.gradescope.com/courses/36442
- Turn in pdf written using LaTeX
- Each problem must use specified number of pages or grader won't find it!
- We will have several mentors grading at once and it will serve each only the pages for the program being graded!
- Sample Hmwk o that gives points for trivial questions submitted properly!

Deterministic Finite State Machine

- A FSM (or DFSM) is a quintuple ($\mathrm{K}, \Sigma, \delta, \mathrm{s}, \mathrm{A}$)
- K is a finite set of states
- Σ is a finite input alphabet
- $s \in K$ is the start state
- $\mathrm{A} \subseteq \mathrm{K}$ is set of accepting (or final) states
- $\delta: \mathrm{K} \times \Sigma \rightarrow \mathrm{K}$ is transition function
- Simple model of real computer
- finite memory

Review: Computations

- Single step of M uses δ to process next character:
- $\left(\mathrm{q}_{\mathrm{r}}, \mathrm{cw}\right) \vdash_{M}\left(\mathrm{q}_{2}, \mathrm{w}\right)$ iff $\delta\left(\mathrm{q}_{1}, \mathrm{c}\right)=\mathrm{q}_{2}$
- $\vdash \mathrm{m}^{*}$ is reflexive, transitive closure
- $\left(\mathrm{q}_{\mathrm{r}}, \mathrm{u}\right) \vdash_{\mathrm{M}}{ }^{*}\left(\mathrm{q}_{2}, \mathrm{w}\right)$ means get from first to second in o or more steps

Defining Language

- M accepts string w iff
there is $\mathrm{q} \in$ A s.t. $(\mathrm{s}, \mathrm{w}) \vdash \mathrm{m}^{*}(\mathrm{q}, \varepsilon)$
- M rejects string wiff
there is $q \notin$ A s.t. $(\mathrm{s}, \mathrm{w}) \vdash \mathrm{m}^{*}(\mathrm{q}, \varepsilon)$
- $L(M)=\left\{w \in \Sigma^{*} \mid M\right.$ accepts $\left.w\right\}$
- L is regular if it is $L(\mathrm{M})$ for some finite state machine M

Proof by induction

- Simple: To prove for all $\mathrm{n} \geq \mathrm{k}, \mathrm{H}(\mathrm{n})$, where $\mathrm{H}(\mathrm{n})$ is a proposition that may be true or false
- Prove base case: $\mathrm{H}(\mathrm{k})$
typically k is o or I
- Prove induction case: if, for some $\mathrm{n} \geq \mathrm{k}, \mathrm{H}(\mathrm{k})$ holds then prove $\mathrm{H}(\mathrm{k}+\mathrm{I})$
- Course-of-values: To prove for all $\mathrm{n} \geq \mathrm{k}, \mathrm{H}(\mathrm{n})$
- Let $\mathrm{n} \geq \mathrm{k}$. Suppose that for all $\mathrm{m}<\mathrm{n}, \mathrm{H}(\mathrm{m})$ holds, then prove $\mathrm{H}(\mathrm{n})$

Example

- Prove $2^{\mathrm{n}}>\mathrm{n}^{2}$ for all $\mathrm{n} \geq 5$.
- Base case ($\mathrm{n}=5$) Show $25>5^{2}$
- Induction case: Suppose for some $\mathrm{k} \geq 5,2^{\mathrm{k}}>\mathrm{k}^{2}$
- Show $2^{k+1}>(\mathrm{k}+\mathrm{I})^{2}$.
- We'll assume $k^{2}>2 k+1$ for $k \geq 5$, but could prove it by induction!

Example

- Draw FSM for w contains at least 2 b's.

Proving FSM is correct

- For each state of FSM, specify invariant.
- By induction on number of steps in computation, prove for all n , after n steps, if the computation is in state q , then invariant for q holds.
- Make sure invariants of final states imply correctness.

Set Up Proof

- Invariants:
- qo: No b's have been read in so far
- qi: Exactly one b has been read in so far
- q2: At least 2 b's have been read in so far
- Base case: $\mathrm{n}=\mathrm{o}$:
- If in state qo after o steps then no b's have been read in
- If in state qi after o steps then one b has been read in
- If in state qI after o steps then at least 2 b's have been read in

Induction step

- Induction hypothesis $\mathrm{H}(\mathrm{n})$:
- After n steps, if the computation is in state q , then invariant for q holds.
- Induction: Show if $\mathrm{H}(\mathrm{n})$ holds for some $\mathrm{n} \geq 0$, then $\mathrm{H}(\mathrm{n}+\mathrm{I})$ holds.
- Could go from $H(n-I)$ to $H(n)$ if $n \geq I$ instead

Intersection

- If $\mathrm{M}_{\mathrm{I}}=\left(\mathrm{K}_{\mathrm{I}}, \Sigma, \delta_{\mathrm{I}}, \mathrm{s}_{\mathrm{I}}, \mathrm{A}_{\mathrm{I}}\right), \mathrm{M}_{2}=\left(\mathrm{K}_{2}, \Sigma, \delta_{2}, \mathrm{~s}_{2}, \mathrm{~A}_{2}\right)$ then let $M=\left(\mathrm{K}_{\mathrm{I}} \times \mathrm{K}_{2}, \Sigma, \delta,<\mathrm{s}_{\mathrm{I}}, \mathrm{s}_{2\rangle}, \mathrm{A}_{\mathrm{I}} \times \mathrm{A}_{2}\right)$
- where $\delta\left(\left\langle\mathrm{q}_{1}, \mathrm{q}_{1}^{\prime}\right\rangle, \mathrm{a}\right)=\left\langle\mathrm{q}_{\mathrm{i}}, \mathrm{q}_{2}^{\prime}\right\rangle$
if $\delta_{1}\left(\mathrm{q}_{\mathrm{q}}, \mathrm{a}\right)=\mathrm{q}_{2} \& \delta_{2}\left(\mathrm{q}_{\mathrm{I}}^{\prime}, \mathrm{a}\right)=\mathrm{q}_{2}^{\prime}$
- Then $L(\mathrm{M})=L\left(\mathrm{M}_{\mathrm{I}}\right) \cap L\left(\mathrm{M}_{2}\right)$

Closure Properties

- Regular languages are closed under:
- Complementation Σ^{*} - (change final set)
- Intersection $L_{1} \cap L_{2} \quad$ (product machine)
- Union $L_{1} \cup L_{2}($ deMorgan laws or variant of product)
- How about concatenation?
- $\mathrm{L}_{\mathrm{t}} \| \mathrm{L}_{2}$
- Can't just put transitions from final of Li to start of L2!
- Also want L*

Nondeterministic Finite State Machine

- An NDFSM is a quintuple (K, $\Sigma, \Delta, \mathrm{s}, \mathrm{A})$
- K is a finite set of states
- Σ is a finite input alphabet
- $\mathrm{s} \in \mathrm{K}$ is the start state
- $\mathrm{A} \subseteq \mathrm{K}$ is set of accepting (or final) states
- $\Delta \subseteq \mathrm{K} \times(\Sigma \cup\{\varepsilon\}) \times \mathrm{K}$ is a finite transition relation
- Can have multiple or no transitions
- ε-moves as well

NDSM Computations

- Let $\Sigma_{\varepsilon}=\Sigma \cup\{\varepsilon\}$
- Single step of M uses Δ to process next character (or nothing):
- $\left(\mathrm{q}_{\mathrm{r}}, \mathrm{cw}\right) \vdash_{\mathrm{M}}\left(\mathrm{q}_{2}, \mathrm{w}\right)$ iff $\left(\left(\mathrm{q}_{\mathrm{r}}, \mathrm{c}\right), \mathrm{q}_{2}\right) \in \Delta, \quad$ for $\mathrm{c} \varepsilon \Sigma$
- $\left(\mathrm{q}_{1}, \mathrm{w}\right) \vdash_{\mathrm{M}}\left(\mathrm{q}_{2}, \mathrm{w}\right)$ iff $\left(\left(\mathrm{q}_{1}, \varepsilon\right), \mathrm{q}_{2}\right) \in \Delta \quad(\varepsilon$-move $)$
- Initial and accepting configurations and computations defined as before.

$\mathrm{NFSM} \approx \mathrm{DFSM}$

- Each DFSM is clearly NFSM
- Just make result of transition into relation
- Other direction uses sets of states
- Define eps $(\mathrm{q})=\left\{\mathrm{q}^{\prime} \in \mathrm{K} \mid(\mathrm{q}, \mathrm{\varepsilon}) \vdash^{*}\left(\mathrm{q}^{\prime}, \mathrm{\varepsilon}\right)\right\}$
- All states reachable via ε-moves from q

NDSM Computations

- NDSM accepts a word w if at least one of its computations accepts
- Always guesses right path if there is one!
- Why NDSM's?
- Easier to design!
- But how to implement?

NFSM \Rightarrow DFSM

- Let $\mathrm{M}=\left(\mathrm{K}, \Sigma, \Delta, \mathrm{s}, \mathrm{A}_{\mathrm{N}}\right)$ be an NFSM.
- Construct DFSM M' $=\left(\mathrm{K}^{\prime}, \Sigma, \delta_{\mathrm{D}}\right.$, eps $\left.(\mathrm{s}), \mathrm{A}_{\mathrm{D}}\right)$ where
- $\mathrm{K}^{\prime}=P(\mathrm{~K})$
- $\delta_{\mathrm{D}}(\mathrm{Q}, \mathrm{c})=\bigcup\{\mathrm{eps}(\mathrm{p}) \mid \exists \mathrm{q} \in \mathrm{Q} .(\mathrm{q}, \mathrm{c}, \mathrm{p}) \in \Delta\}$ for $\mathrm{Q} \in P(\mathrm{~K})$
- $A_{D}=\left\{R \subseteq K \mid R \cap A_{N} \neq \varnothing\right\}$, i.e., R has a final state
- Show $L(M)=L\left(M^{\prime}\right)$

Proof

- Lemma: Let $\mathrm{w} \in \Sigma^{*}, \mathrm{p}, \mathrm{q} \in \mathrm{K}, \mathrm{P} \in \mathrm{K}^{\prime}$. Then $(\mathrm{q}, \mathrm{w}) \vdash \mathrm{M}^{*}(\mathrm{p}, \mathrm{\varepsilon})$ iff $(e p s(\mathrm{q}), \mathrm{w}) \vdash_{\mathrm{M}^{*}}(\mathrm{P}, \mathrm{\varepsilon}) \& \mathrm{p} \in \mathrm{P}$
- Assume lemma. Then
$\mathrm{w} \in L(\mathrm{M})$ iff $(\mathrm{s}, \mathrm{w}) \vdash \vdash^{*}(\mathrm{p}, \mathrm{\varepsilon})$ for $\mathrm{p} \in \mathrm{A}_{\mathrm{N}}$ iff $(\mathrm{eps}(\mathrm{s}), \mathrm{w}) \vdash_{\mathrm{m}^{*}}(\mathrm{P}, \varepsilon)$ for $\mathrm{p} \in \mathrm{P}, \mathrm{p} \in \mathrm{A}_{\mathrm{N}}$ iff $\left(\right.$ eps $(\mathrm{s}, \mathrm{w}) \vdash_{\mathrm{M}^{*}}(\mathrm{P}, \mathrm{\varepsilon})$ where $\mathrm{P} \in \mathrm{A}_{\mathrm{D}}$ iff $\mathrm{w} \in L\left(\mathrm{M}^{\prime}\right)$
- Now prove lemma by induction on |w| iff by Lemma

Base cases

- Show

$$
(\mathrm{q}, \mathrm{w}) \vdash_{\mathrm{M}}{ }^{*}(\mathrm{p}, \varepsilon) \text { iff }(e p s(\mathrm{q}), \mathrm{w}) \vdash_{\mathrm{M}^{*}}(\mathrm{P}, \varepsilon) \& \mathrm{p} \in \mathrm{P}
$$

- By induction on length of w.
- Let $|\mathrm{w}|=0$. Thus $\mathrm{w}=\varepsilon$
- (\Rightarrow) Suppose $(\mathrm{q}, \varepsilon) \vdash \mathrm{m}^{*}(\mathrm{p}, \varepsilon)$. Then $\mathrm{p} \in \operatorname{eps}(\mathrm{q})$.
- Thus $(e p s(q), \varepsilon) \vdash_{M^{*}}(e p s(q), \varepsilon) \& p \in e p s(q)$. So let $\mathrm{P}=e p s(\mathrm{q}) . \boldsymbol{V}$
- (\Leftarrow) Suppose $(e p s(q), \varepsilon) \vdash_{M^{*}}{ }^{*}(\mathrm{P}, \varepsilon) \& \mathrm{p} \in P$.
- Then P must be eps (q), and by def of $e p s$, $\mathrm{p} \in \mathrm{P}$ implies $(\mathrm{q}, \varepsilon) \vdash \mathrm{M}^{*}(\mathrm{p}, \varepsilon) \boldsymbol{\iota}$

Induction case

Show $(q, w) \vdash \mathrm{m}^{*}(\mathrm{p}, \varepsilon)$ iff $(e p s(\mathrm{q}), \mathrm{w}) \vdash \mathrm{m}^{*}(\mathrm{P}, \varepsilon) \& \mathrm{p} \in \mathrm{P}$

- Suppose true for v s.t. $|\mathrm{v}|=\mathrm{n}$. Let $\mathrm{w}=\mathrm{za}$ for z s.t. $|\mathrm{zl}|=\mathrm{n}$
\Leftrightarrow) Suppose (q,za) $\vdash \mathrm{m}^{*}(\mathrm{p}, \varepsilon)$ where
$(\mathrm{q}, \mathrm{za}) \vdash_{\mathrm{M}}{ }^{*}(\mathrm{p}, \mathrm{a}) \&\left(\mathrm{p}^{\prime}, \mathrm{a}\right) \vdash_{\mathrm{M}}\left(\mathrm{p}^{\prime \prime}, \varepsilon\right) \&\left(\mathrm{p}^{\prime \prime}, \varepsilon\right) \vdash_{\mathrm{M}}(\mathrm{p}, \varepsilon)$
Therefore $(\mathrm{q}, \mathrm{z}) \vdash_{\mathrm{M}}{ }^{*}\left(\mathrm{p},{ }^{\prime}, \varepsilon\right) \& \mathrm{p} \in e p s(\mathrm{p} ")$
By induction $\exists \mathrm{P}$ s.t. $(\mathrm{eps}(\mathrm{q}), \mathrm{z}) \vdash_{\mathrm{m}^{*}}{ }^{*}\left(\mathrm{P}^{\prime}, \varepsilon\right) \& \mathrm{p}^{\prime} \in \mathrm{P}^{\prime} \&$
thus $(\operatorname{eps}(q), z a) \vdash_{M^{*}}{ }^{*}\left(P^{\prime}, a\right) \& p^{\prime} \in P^{\prime}$
By def of $M^{\prime},\left(\mathrm{P}^{\prime}, \mathrm{a}\right) \vdash_{M^{\prime}}(\mathrm{P}, \varepsilon)$ for
$\mathrm{P}=\cup\{e p s(\mathrm{r}) \mid \exists \mathrm{q} \in \mathrm{Q} .((\mathrm{q}, \mathrm{a}), \mathrm{r}) \in \Delta\}$
By above, $((\mathrm{p}, \mathrm{a}), \mathrm{p} ") \in \Delta \& \mathrm{p} \in e p s(\mathrm{p})$. Therefore $\mathrm{p} \in \mathrm{P}$
Thus $(e p s(q), z a) \vdash_{M^{*}}{ }^{*}(P, \varepsilon)$ for $p \in P$.

Closure Revisited

- Union:
- Make sets of states disjoint, add new start w / ε moves to starts of original. Final states union of original finals
- Concatenation:
- From each final state of first, add ε move to start of second. Final states are only those of second.

Exercise

- If L is regular, show that L^{*} is regular.

Minimizing FSM

- Useful for implementing in hardware
- Given regular L , is there a minimal FSM accepting it?
- Is it unique?
- Can we construct it?

Minimizing FSM

- Def: x, y are indistinguishable wrt $\mathrm{L}, \mathrm{x} \approx \mathrm{L} \mathrm{y}$ iff for all $z \in \Sigma^{*}$, either both $x z, y z \in L$ or neither is
- Ex: if $L=\{w \in \Sigma * \mid w$ does not contain aab as a substring $\}$ then a and baba indistinguishable, but a and ab not.
- $\approx \mathrm{L}$ is right regular equivalence relation
- States of new minimal machine will be equivalence classes: $[\mathrm{w}]=\left\{\mathrm{v} \in \Sigma^{*} \mid \mathrm{v} \approx \mathrm{L} w\right\}$
- In example, equiv class is all w going to same state q.
- Then $L(M)$ is union of equivalence classes.

Observations

- No equiv class contains both $u \in L$ and $v \notin L$.
- If strings go to dead state, then all in same class
- More than one equiv class can contain elts of L
- If M is DFSM \& q is state, then all strings going to state q are in same equiv. class
- If $\mathrm{L}=L(\mathrm{M})$ then
\# equiv classes of $\mathrm{L} \leq$ \# states of M
- Thus, if L is regular, then \# equiv classes of L is finite.

Non-Regular Languages

- Some language have ∞ \# of equiv classes
- $P=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$
- [b], [ab], [aab], [aaab], ... all distinct
- Thus P not regular.

Construct Minimal DFSM

Theorem: Let L be a regular language over some alphabet Σ. Then there is DFSM M that accepts L and that has precisely n states where n is the number of equivalence classes of L. Any other FSM that accepts L must either have more states than M or it must be equivalent to M except for state names.

But how do we find equivalence classes? See homework!

Proof

Let $M=(K, \Sigma, \delta, s, A)$, where:

- K consists of the n equivalence classes of L.
- $s=[\varepsilon]$, the equivalence class of ε under L.
- $\mathrm{A}=\{[\mathrm{x}]: \mathrm{x} \in \mathrm{L}\}$. Well-defined!
- $\delta([\mathrm{x}], \mathrm{a})=[\mathrm{xa}]$. Well-defined because right regular.

Show $\mathrm{L}=L(\mathrm{M})$ and unique minimal
Example

