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Create Universal TM

• Input:

• program  inputString

• where program is TM description

• Output

• result of executing program on inputString

Hmwk: Dove-Tailing

• Suppose want to find if any input s.t. M stops 
on w.

• If just go through all inputs one at a time, may 
get stuck if some computation doesn’t finish.

• Dove-tailing is sneaky method to make sure we 
have a chance to try every possibility without 
getting stuck in an infinite computation.

Trying all inputs
• List all possible inputs w0, w1, w2, …

• countably infinite

• Plan:

• Run M for one step on w0

• Run M for two steps on each of w0, w1

• Run M for three steps on each of w0, w1, w2

• …

• If M steps in 134,543 steps on w 123 then will eventually 
find it.  If accepts nothing then run forever.

Dove-tailing



Finish Universal ™

Encoding TM

• Showed how to encode TM description using 
binary to represent states and input symbols.

Encoding Example
Consider M = ({s, q, h}, {a, b, c}, {❑, a, b, c}, δ, s, {h}):

<M> = (q00,a00,q01,a00,→), (q00,a01,q00,a10,→), 
           (q00,a10,q01,a01, ←), (q00,a11,q01,a10,←), 
           (q01,a00,q00,a01,→), (q01,a01,q01,a10,→), 

      (q01,a10,q01,a11,←), (q01,a11,h11,a01,←)

state symbol δ

s ❑ (q,❑,, →)

s a (s,b,→)

s b (q,a, ←)

s c (q,b, ←)

q ❑ (s,a,, →)

q a (q,b,→)

q b (q,b, ←)

q c (h,a, ←)

state/symbol representation

s q00

q q01

h h10

❑ a00

a a01

b a10

c a11

Enumerating TMs

• Theorem: There exists an infinite lexicographic 
enumeration of:
1. All syntactically valid TMs.

2. All syntactically valid TMs with specific input alphabet 
Σ.

3. All syntactically valid TMs with specific input alphabet Σ 
and specific tape alphabet Γ.     



Side note

• Can talk about algorithmically modifying TM’s:

• Example:  Make an extra copy of input and 
then run <M> on new copy.

Specifying UTM

• On input <M, w>, U must:

• Halt iff M halts on w.

• If M is a deciding or semideciding machine, then:

• If M accepts, accept.

• If M rejects, reject.

• If M computes a function, then U(<M, w>) must equal 
M(w).

Implementation

• ... as a 3-tape TM:

• Tape 1: M’s tape.  

• Tape 2: <M>, the “program” that U is running.

• Tape 3: M’s state.

Implementation

• Initialization of U:

• Copy <M> onto tape 2 (and erase from tape 1).

• Look at <M>, figure out # of states, and write the encoding of 
state s on tape 3.

• After initialization:



Simulation

• Simulate the steps of M :
1. Until M would halt do:

1.1.Scan tape 2 for a transition matching the current state, input pair. 

1.2.Perform the associated action, by changing tapes 1 and 3 (state).  If 
necessary, extend the tape.

1.3.If no matching quintuple found, halt.  Else loop.

2. Report the same result M would report.

• How long does U take?

Universal FSM??

• Can we write FSM, M, that accepts  
L = {<F, w> : F is a FSM, and w ∈ L(F) }?

How big is UTM?
• The first constructed by Turing. 

• Shannon showed any UTM could be converted either to 
a 2-symbol machine or to a 2-state machine 

• Minsky (1960): 7-state 6-symbol machine. 

• Watanabe (1961): 8-state 5-symbol machine. 

• Minsky (1962): 7-state 4-symbol machine. 

• Rogozhin (1996) 4-state 6-symbol machine 

• Wolfram & Reed(2002): 2-state 5-symbol machine. 

• Smith & Wolfram(2007): 2-state 3-symbol machine. 

• No 2-state 2-symbol UTM exists. 

What is more powerful?

• Are we done?  Is there more powerful model?

• Lots of languages we can’t recognize with TM’s

• Countably infinite number of Turing machines since we 
can lexicographically enumerate all the strings that 
correspond to syntactically legal Turing machines.

• There is an uncountably infinite number of languages 
over any nonempty alphabet.  

• Many more languages than Turing  machines.



Historical Context

• David Hilbert’s lecture to 1900 International 
Congress of Mathematics in Paris.

• Presented 23 problems to influence course of 
20th century mathematics (only 10 at meeting)

CS & Logic Relevant:

1.  Continuum hypothesis:  Is there a set with 
cardinality between that of integers and reals?

2.  Prove that the axioms of arithmetic are 
consistent.

10. Find an algorithm to determine whether a 
given polynomial Diophantine equation with 
integer coefficients has an integer solution.

All Had Surprising Results

1.  Continuum hypothesis:  Independent of 
axioms of set theory  (K. Gödel & P. Cohen)

2.  Consistency of arithmetic: Not provable from 
within arithmetic (K. Gödel)

10. Find an algorithm to determine solutions to 
Diophantine equations:  Undecidable. (Y. 
Matiyasevich, J. Robinson).

Hilbert Again

• Entscheidungsproblem posed by David Hilbert 
in 1928.

• Find an algorithm that will take as input a description of 
a formal language and a mathematical statement in the 
language and produce as output either "True" or "False" 
according to whether the statement is true or false.

• If find an algorithm, then no problem, but ...

• how do you show there is no such algorithm?



What is an algorithm?

• Alonzo Church (w/S. Kleene) 1936: λ-calculus

• Alan Turing 1936: Turing machine

• Negative answer to the Entscheidungsproblem

• Church 1935-36

• Turing (independently) 1936-37 -- reducing to Halting 
Problem

• Both influenced by Gödel’s proof of incompleteness of 
predicate logic & Number Theory

Church-Turing Thesis

• All formalisms powerful enough to describe 
everything we think of as a computational 
algorithm are equivalent. 

• Can’t prove it because don’t have a list of all 
possible formalisms.  

• But have shown it for all proposed formalisms.

Proposed Formal Models

• Modern computers (with unbounded memory)

• Lambda calculus

• Partial recursive functions

• Tag systems (FSM plus FIFO queue)

• Unrestricted grammars:

• aSa → B

Proposed Formal Models

• Post production systems

• Markov algorithms

• Conway’s Game of Life

• One dimensional cellular automata

• DNA-based computing 

• Lindenmayer systems

• While language



Partial Recursive Functions

• Are built up from:

• Constant fcns: for each n, k, cn(x1,...,xk) = n

• Successor:  S(x) = x + 1

• Projection:  Pki(x1,...,xk) = xi

• Using composition:  

• If g1(x1,...,xk),..., gm(x1,…,xk), h(x1,...,xm) are fcns, define 
f(x1,...,xk) = h(g1(x1,...,xk),..., gm(x1,...,xk))

Partial Recursive Functions

• Primitive recursion: 

• Given the k-ary function g(x1,...,xk) and k+2 -ary function 
h(y,z,x1,...,xk), define f(y, x1,...,xk) where

• f(0,x1,...,xk) = g(x1, ..., xk)

• f(y+1,x1,...,xk) = h(y, f(y,x1,...,xk), x1, ..., xk)

• Minimization:

• Given f(y, x1,...,xk), define h(x1,...,xk) = μz.(f(z, x1,...,xk) = 0) 
where μz.(R(z,y)) is the least z ≥ 0 s.t. R(z,y).

Example

• Informally:

• plus(o,n) = n

• plus(m+1,n) = S(plus(m,n))

• More formally:

• plus(0,n) = P11(n)

• plus(m+1,n) = h(m,plus(m,n),n) where

• h(x,y,z) = S(P32(x,y,z))

Defining Functions

• In math and LISP/Scheme/Racket:

• f(n) = n * n

• (define (f n) (* n n))

• (define f (lambda (n) (* n n)))

• λ n -> n * n       in SML

• In lambda calculus

• λn. n * n                        anonymous functions

• ((λn. n * n) 12)     (which evaluates to 144)


