Lecture 19: Other Models of Computability

CSCI ior
Spring, 2019
Kim Bruce

Create Universal TM

- Input:
- program inputString
- where program is TM description
- Output
- result of executing program on inputString

Hmwk: Dove-Tailing

- Suppose want to find if any input s.t. M stops on w.
- If just go through all inputs one at a time, may get stuck if some computation doesn't finish.
- Dove-tailing is sneaky method to make sure we have a chance to try every possibility without getting stuck in an infinite computation.

Trying all inputs

- List all possible inputs wo, wi, w2, ...
- countably infinite
- Plan:

Dove-tailing

- Run M for one step on wo
- Run M for two steps on each of wo, wi
- Run M for three steps on each of wo, wi, w2
- ...
- If M steps in $\mathbf{3} 4,543$ steps on w 123 then will eventually find it. If accepts nothing then run forever.

Encoding TM

Finish Universal ${ }^{\text {TM }}$

Encoding Example

Consider $\mathrm{M}=(\{\mathrm{s}, \mathrm{q}, \mathrm{h}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\square, \mathrm{a}, \mathrm{b}, \mathrm{c}\}, \delta, \mathrm{s},\{\mathrm{h}\})$:

state	symbol	δ
s	-	$(q$, , , \rightarrow)
s	a	(s, b, \rightarrow)
s	b	$(9, a, \leftarrow)$
s	c	(q, b, $\leftarrow)$
q	\square	(s, a, n)
q	a	(q, b, \rightarrow)
${ }^{q}$	${ }^{\text {b }}$	$(q, \mathrm{~b}, \leftarrow)$
q	c	(h, a, \leftarrow)

state/symbol	representation
${ }^{s}$	${ }^{\mathrm{q} 00}$
${ }^{\text {a }}$	${ }^{\mathrm{q} 01}$
${ }^{h}$	${ }^{\text {h10 }}$
\square	${ }^{\mathrm{a} 00}$
${ }^{a}$	${ }^{\mathrm{a} 01}$
${ }^{\mathrm{b}}$	${ }^{\mathrm{a} 10}$
${ }^{c}$	${ }^{\mathrm{a} 11}$

$<\mathrm{M}>=(\mathrm{qoo}, \mathrm{aoo}, \mathrm{qOI}, \mathrm{aoo}, \rightarrow),(\mathrm{qoo}, \mathrm{aoI}, \mathrm{qoo}, \mathrm{aı}, \rightarrow)$, (qоo,aıo,qoı,aoı, $\leftarrow),(q \circ o, a ı ı, q \circ ı, a ı o, \leftarrow)$, (qoı,aoo,qоo,aoı, \rightarrow), (qoi,aoı,qoı,aıo, \rightarrow), (qoı,aıo,qoı,aıı, $\leftarrow),($ qoı,aıı,hıı,aoı, $\leftarrow)$

Enumerating TMs

- Theorem: There exists an infinite lexicographic enumeration of:
I. All syntactically valid TMs.

2. All syntactically valid TMs with specific input alphabet Σ.
3. All syntactically valid TMs with specific input alphabet Σ and specific tape alphabet Γ.

Side note

- Can talk about algorithmically modifying TM's:

- Example: Make an extra copy of input and then run $<\mathrm{M}>$ on new copy.

Specifying UTM

- On input $<M, w>, U$ must:
- Halt iff M halts on w.
- If M is a deciding or semideciding machine, then:
- If M accepts, accept.
- If M rejects, reject.
- If M computes a function, then $U(<M, w>)$ must equal $\mathrm{M}(\mathrm{w})$.

Implementation

- Initialization of U :
- Copy $\langle\mathrm{M}>$ onto tape 2 (and erase from tape I).
- Look at $<\mathrm{M}>$, figure out \# of states, and write the encoding of state s on tape 3 .
- After initialization:

Simulation

- Simulate the steps of M :
I. Until M would halt do:
1.I.Scan tape 2 for a transition matching the current state, input pair
1.2.Perform the associated action, by changing tapes I and 3 (state). If necessary, extend the tape.
1.3.If no matching quintuple found, halt. Else loop.

2. Report the same result M would report.

- How long does U take?

How big is UTM?

- The first constructed by Turing.
- Shannon showed any UTM could be converted either to a 2^{2}-symbol machine or to a 2 -state machine
- Minsky (1960): 7-state 6-symbol machine.
- Watanabe (1961): 8-state 5 -symbol machine.
- Minsky (1962): 7-state 4-symbol machine.
- Rogozhin (1996) 4-state 6-symbol machine
- Wolfram \& Reed(2002): 2-state 5-symbol machine.
- Smith \& Wolfram(2007): 2-state 3-symbol machine.
- No 2-state 2-symbol UTM exists.

Universal FSM??

- Can we write FSM, M, that accepts $\mathrm{L}=\{<\mathrm{F}, \mathrm{w}\rangle: \mathrm{F}$ is a FSM , and $\mathrm{w} \in \mathrm{L}(\mathrm{F})\}$?

What is more powerful?

- Are we done? Is there more powerful model?
- Lots of languages we can't recognize with TM's
- Countably infinite number of Turing machines since we can lexicographically enumerate all the strings that correspond to syntactically legal Turing machines.
- There is an uncountably infinite number of languages over any nonempty alphabet.
- Many more languages than Turing machines.

Historical Context

- David Hilbert's lecture to 1900 International Congress of Mathematics in Paris.
- Presented 23 problems to influence course of 20th century mathematics (only io at meeting)

CS \& Logic Relevant:

I. Continuum hypothesis: Is there a set with cardinality between that of integers and reals?
2. Prove that the axioms of arithmetic are consistent.
ı. Find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution.

All Had Surprising Results

I. Continuum hypothesis: Independent of axioms of set theory (K. Gödel \& P. Cohen)
2. Consistency of arithmetic: Not provable from within arithmetic (K. Gödel)
io. Find an algorithm to determine solutions to
Diophantine equations: Undecidable. (Y. Matiyasevich, J. Robinson).

Hilbert Again

- Entscheidungsproblem posed by David Hilbert in 1928.
- Find an algorithm that will take as input a description of a formal language and a mathematical statement in the language and produce as output either "True" or "False" according to whether the statement is true or false.
- If find an algorithm, then no problem, but ...
- how do you show there is no such algorithm?

What is an algorithm?

- Alonzo Church (w/S. Kleene) 1936: λ-calculus
- Alan Turing 1936: Turing machine
- Negative answer to the Entscheidungsproblem
- Church 1935-36
- Turing (independently) 1936-37-- reducing to Halting Problem
- Both influenced by Gödel's proof of incompleteness of predicate logic \& Number Theory

Church-Turing Thesis

- All formalisms powerful enough to describe everything we think of as a computational algorithm are equivalent.
- Can't prove it because don't have a list of all possible formalisms.
- But have shown it for all proposed formalisms.

Proposed Formal Models

- Modern computers (with unbounded memory)
- Lambda calculus
- Partial recursive functions
- Tag systems (FSM plus FIFO queue)
- Unrestricted grammars:
- aSa \rightarrow B

Proposed Formal Models

- Post production systems
- Markov algorithms
- Conway's Game of Life
- One dimensional cellular automata
- DNA-based computing
- Lindenmayer systems
- While language

Partial Recursive Functions

- Are built up from:
- Constant fcns: for each $\mathrm{n}, \mathrm{k}, \mathrm{c}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\mathrm{n}$
- Successor: $\mathrm{S}(\mathrm{x})=\mathrm{x}+\mathrm{I}$
- Projection: $\mathrm{Pk}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\mathrm{x}_{\mathrm{i}}$
- Using composition:
- If $\mathrm{g}_{\mathrm{I}}\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right), \ldots, \mathrm{g}_{\mathrm{m}}\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right), \mathrm{h}\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{m}}\right)$ are fcns, define $\mathrm{f}\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\mathrm{h}\left(\mathrm{g}_{\mathrm{I}}\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right), \ldots, \mathrm{g}_{\mathrm{m}}\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right)$

Partial Recursive Functions

- Primitive recursion:
- Given the k -ary function $\mathrm{g}\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ and $\mathrm{k}+2$-ary function $h\left(y, z, x_{1}, \ldots, x_{k}\right)$, define $f\left(y, x_{1}, \ldots, x_{k}\right)$ where
- $f\left(o, x_{1}, \ldots, x_{k}\right)=g\left(x_{1}, \ldots, x_{k}\right)$
- $\mathrm{f}\left(\mathrm{y}+\mathrm{I}, \mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\mathrm{h}\left(\mathrm{y}, \mathrm{f}\left(\mathrm{y}, \mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right), \mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$
- Minimization:
- Given $\mathrm{f}\left(\mathrm{y}, \mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$, define $\mathrm{h}\left(\mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\mu \mathrm{z} .\left(\mathrm{f}\left(\mathrm{z}, \mathrm{x}_{\mathrm{I}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=0\right)$ where $\mu \mathrm{z} .(\mathrm{R}(\mathrm{z}, \mathrm{y}))$ is the least $\mathrm{z} \geq 0$ s.t. $\mathrm{R}(\mathrm{z}, \mathrm{y})$.

Defining Functions

- In math and LISP/Scheme/Racket:
- $\mathrm{f}(\mathrm{n})=\mathrm{n}$ * n
- (define $\left.\left.(\mathrm{f} \mathrm{n}){ }^{*} \mathrm{n} \mathrm{n}\right)\right)$
- (define $\mathrm{f} \underline{\left.\left.\underline{\text { lambda }(\mathrm{n})})^{*} \mathrm{n} \mathrm{n}\right)\right)}$
- $\lambda_{\mathrm{n}->\mathrm{n}}$ n n in $S M L$
- In lambda calculus
- $\lambda \mathrm{n} . \mathrm{n}$ * n
anonymousfunctions
- ($(\lambda \mathrm{n} . \mathrm{n} * \mathrm{n}) \mathrm{I} 2)$ (which evaluates to I 44)

