Lecture 19: Other Models of Computability

CSCI 101 Spring, 2019

Kim Bruce

Create Universal TM

- Input:
 - program inputString
 - where program is TM description
- Output
 - result of executing program on inputString

Hmwk: Dove-Tailing

- Suppose want to find if any input s.t. M stops on w.
- If just go through all inputs one at a time, may get stuck if some computation doesn't finish.
- Dove-tailing is sneaky method to make sure we have a chance to try every possibility without getting stuck in an infinite computation.

Trying all inputs

- List all possible inputs wo, w1, w2, ...
 - countably infinite
- Plan:

Dove-tailing

- Run M for one step on wo
- Run M for two steps on each of wo, wi
- Run M for three steps on each of wo, w1, w2
- ...
- If M steps in 134,543 steps on w 123 then will eventually find it. If accepts nothing then run forever.

Encoding TM

• Showed how to encode TM description using binary to represent states and input symbols.

Encoding Example Consider M = ($\{s, q, h\}, \{a, b, c\}, \{\Box, a, b, c\}, \delta, s, \{h\}$): state/symbol representation state symbol (q, \Box, \rightarrow) q00 S s q01 (s,b,→) qs а h b (q,a, ←) s a00 (q,b, ←) s С a01 а (s,a,, →) qa10 b q(q,b,→) С a11 (q,b, ←) q(h,a, ←) <M> = (q00,a00,q01,a00,→), (q00,a01,q00,a10,→), (qoo,a10,qo1,a01, ←), (qoo,a11,qo1,a10,←), (q01,a00,q00,a01,→), (q01,a01,q01,a10,→),

(q01,a10,q01,a11,←), (q01,a11,h11,a01,←)

Enumerating TMs

- Theorem: There exists an infinite lexicographic enumeration of:
 - 1. All syntactically valid TMs.
 - 2. All syntactically valid TMs with specific input alphabet $\Sigma.$
 - 3. All syntactically valid TMs with specific input alphabet Σ and specific tape alphabet $\Gamma.$

Side note

• Can talk about algorithmically modifying TM's:

• Example: Make an extra copy of input and then run <M> on new copy.

Specifying UTM

- On input <M, w>, U must:
 - Halt iff M halts on w.
 - If M is a deciding or semideciding machine, then:
 - If M accepts, accept.
 - If M rejects, reject.
 - If M computes a function, then U(<M, w>) must equal M(w).

Implementation

- ... as a 3-tape TM:
 - Tape 1: M's tape.
 - Tape 2: <M>, the "program" that U is running.
 - Tape 3: M's state.

Implementation

	< <i>M</i>			М,	<i>w</i>		w>	
	1	0	0	0	0	0	0	
u i								
	1	0	0	0	0	0	0	
	1	0	0	0	0	0	0	

- Initialization of U:
 - Copy <M> onto tape 2 (and erase from tape 1).
 - Look at <M>, figure out # of states, and write the encoding of state s on tape 3.
- After initialization:

				<		w>	
0	0	0	0	1	0	0	
< M			·····M>				
1	0	0	0	0	0	0	
q	0	0	0				
1		۵					

Simulation

- Simulate the steps of M :
 - I. Until M would halt do:
 - 1.1.Scan tape 2 for a transition matching the current state, input pair.
 - 1.2. Perform the associated action, by changing tapes 1 and 3 (state). If necessary, extend the tape.
 - 1.3. If no matching quintuple found, halt. Else loop.
 - 2. Report the same result M would report.
- How long does U take?

Universal FSM??

• Can we write FSM, M, that accepts L = {<F, w> : F is a FSM, and w ∈ L(F) }?

How big is UTM?

- The first constructed by Turing.
- Shannon showed any UTM could be converted either to a 2-symbol machine or to a 2-state machine
- Minsky (1960): 7-state 6-symbol machine.
- Watanabe (1961): 8-state 5-symbol machine.
- Minsky (1962): 7-state 4-symbol machine.
- Rogozhin (1996) 4-state 6-symbol machine
- Wolfram & Reed(2002): 2-state 5-symbol machine.
- Smith & Wolfram(2007): 2-state 3-symbol machine.
- No 2-state 2-symbol UTM exists.

What is more powerful?

- Are we done? Is there more powerful model?
- Lots of languages we can't recognize with TM's
 - Countably infinite number of Turing machines since we can lexicographically enumerate all the strings that correspond to syntactically legal Turing machines.
 - There is an uncountably infinite number of languages over any nonempty alphabet.
 - Many more languages than Turing machines.

Historical Context

- David Hilbert's lecture to 1900 International Congress of Mathematics in Paris.
- Presented 23 problems to influence course of 20th century mathematics (only 10 at meeting)

CS & Logic Relevant:

1. Continuum hypothesis: Is there a set with cardinality between that of integers and reals?

2. Prove that the axioms of arithmetic are consistent.

10. Find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution.

All Had Surprising Results

1. Continuum hypothesis: Independent of axioms of set theory (K. Gödel & P. Cohen)

2. Consistency of arithmetic: Not provable from within arithmetic (K. Gödel)

10. Find an algorithm to determine solutions to Diophantine equations: Undecidable. (Y. Matiyasevich, J. Robinson).

Hilbert Again

- Entscheidungsproblem posed by David Hilbert in 1928.
 - Find an algorithm that will take as input a description of a formal language and a mathematical statement in the language and produce as output either "True" or "False" according to whether the statement is true or false.
- If find an algorithm, then no problem, but ...
 - how do you show there is no such algorithm?

What is an algorithm?

- Alonzo Church (w/S. Kleene) 1936: λ -calculus
- Alan Turing 1936: Turing machine
- Negative answer to the Entscheidungsproblem
 - Church 1935-36
 - Turing (independently) 1936-37 -- reducing to Halting Problem
 - Both influenced by Gödel's proof of incompleteness of predicate logic & Number Theory

Church-Turing Thesis

- All formalisms powerful enough to describe everything we think of as a computational algorithm are equivalent.
- Can't prove it because don't have a list of all possible formalisms.
 - But have shown it for all proposed formalisms.

Proposed Formal Models

- Modern computers (with unbounded memory)
- Lambda calculus
- Partial recursive functions
- Tag systems (FSM plus FIFO queue)
- Unrestricted grammars:
 - $aSa \rightarrow B$

Proposed Formal Models

- Post production systems
- Markov algorithms
- Conway's Game of Life
- One dimensional cellular automata
- DNA-based computing
- Lindenmayer systems
- While language

Partial Recursive Functions

- Are built up from:
 - Constant fcns: for each n, k, $c_n(x_1,...,x_k) = n$
 - Successor: S(x) = x + I
 - Projection: $P^{k_i}(x_1,...,x_k) = x_i$
- Using composition:
 - If $g_i(x_1,...,x_k),..., g_m(x_1,...,x_k)$, $h(x_1,...,x_m)$ are fcns, define $f(x_1,...,x_k) = h(g_i(x_1,...,x_k),..., g_m(x_1,...,x_k))$

Partial Recursive Functions

- Primitive recursion:
 - Given the k-ary function $g(x_1,\ldots,x_k)$ and k+2 -ary function $h(y,z,x_1,\ldots,x_k),$ define $f(y,\,x_1,\ldots,x_k)$ where
 - $f(o,x_1,...,x_k) = g(x_1,...,x_k)$
 - $f(y_{+1},x_1,...,x_k) = h(y, f(y_{,x_1},...,x_k), x_1, ..., x_k)$
- Minimization:
 - Given f(y, $x_1,...,x_k$), define $h(x_1,...,x_k) = \mu z.(f(z, x_1,...,x_k) = 0)$ where $\mu z.(R(z,y))$ is the least $z \ge 0$ s.t. R(z,y).

Example

- Informally:
 - plus(o,n) = n
 - plus(m+1,n) = S(plus(m,n))
- More formally:
 - $plus(o,n) = P_{I_I}(n)$
 - plus(m+1,n) = h(m,plus(m,n),n) where
 - $h(x,y,z) = S(P_{3_2}(x,y,z))$

Defining Functions

- In math and LISP/Scheme/Racket:
 - f(n) = n * n
 - (define (f n) (* n n))
 - (define f (<u>lambda (n) (* n n))</u>)
 - $\lambda n \rightarrow n * n$ in SML
- In lambda calculus
 - λn. n * n anonymous functions
 - $((\lambda n. n * n) 12)$ (which evaluates to 144)