Lecture 17: Turing Machine

 VariantsCSCI ioi
Spring, 2019
Kim Bruce

Last Time

- Showed multi-tape TM's have no more power than single tape (though can be more efficient)
- Look at other variations.

Nondeterminism

- A nondeterministic TM is a six-tuple ($\mathrm{K}, \Sigma, \Gamma$, $\Delta, \mathrm{s}, \mathrm{H})$ where Δ is a subset of:

$$
((\mathrm{K}-\mathrm{H}) \times \Gamma) \times(\mathrm{K} \times \Gamma \times\{\leftarrow, \rightarrow\})
$$

Deciding

- Let $\mathrm{M}=(\mathrm{K}, \Sigma, \Gamma, \Delta, \mathrm{s},\{\mathrm{y}, \mathrm{n}\})$ be a nondeterministic TM, and w be element of Σ^{*}.
- M accepts wiff at least one of its computations accepts.
- M rejects w iff all of its computations reject.
- M decides a language $L \subseteq \Sigma^{*}$ iff, $\forall \mathrm{w}$:
- There is a finite number of paths that M can follow on input w,
- All of those paths halt, and
- $w \in L$ iff M accepts w.

Nondeterministic Programming

- $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{O}, \mathrm{I}\}^{*}: \mathrm{w}\right.$ is the binary encoding of a composite number\}. M decides L by doing the following on input w:
non-prime
- Nondeterministically choose two positive binary numbers such that: $2 \leq|\mathrm{p}|,|q| \leq|\mathrm{w}|$. Write them on the tape, after w, separated by ;
- Dirooir;iri;inill
- Multiply p and q and put the answer, A, on the tape, in place of p and q.
- Dirooif;ionimal
- Compare A and w. If equal, go to y. Else go to n.

Example

- Let $\mathrm{L}=\{$ descriptions of TMs that halt on at least one string\}.
- Let $<\mathrm{M}>$ mean the string that describes some TM M.
- S semi-decides L as follows on input $\langle\mathrm{M}\rangle$:
- Nondeterministically choose a string w in $\Sigma_{\mathrm{M}}{ }^{*}$ and write it on the tape.
- Run M on w
- See later that semi-deciding is best we can do.

Semi-Deciding

- Let $\mathrm{M}=(\mathrm{K}, \Sigma, \Gamma, \Delta, \mathrm{s}, \mathrm{H})$ be a nondeterministic TM.
- We say that M semi-decides a language $L \subseteq \Sigma^{*}$ iff for all $w \in \Sigma^{*}: \quad w \in L$ iff ($\mathrm{s}, \underline{\mathrm{D}}_{\mathrm{w}}$) yields at least one accepting configuration.

Non-deterministic Functions

- M computes a function f iff, $\forall \mathrm{w} \in \Sigma^{*}$:
- All of M's computations halt, and
- All of M's computations result in $\mathrm{f}(\mathrm{w})$.

Review

- Non-determinism not more powerful for FSM's
- Subset construction
- PDA's?
- Which is TM more like?

Non-determinism Not More Powerful!

- Theorem: If a nondeterministic TM M decides or semi-decides a language, or computes a function, then there is a standard TM M^{\prime} deciding or semi-deciding the same language or computing the same function.
- Proof: (by construction). Must do separate constructions for deciding/semi-deciding and for function computation.

Proof Sketch

- Try all possible computation paths
- Because computations may be infinite, need to do breadth first search
- Use 3 tapes
- Ist for input (never modified)
- $2 n d$ for computations
- 3rd for string specifying which of possible instructions to take

Proof Sketch

- Let b be largest number of possible transitions from any configuration.
- Encode computation of length n as n -digit number written in base b:
- E.g. If $\mathrm{b}=3$, then IO22I encodes computation of length 5.
- Let E be TM program that takes a number m in base b and returns $m+\mathrm{I}$ in base b .

Computation

- Start with input w on tape I , o on tape 3
- Loop:
- Copy input w from tape I to tape 2
- Using number n on tape 3 to select steps to take in simulating run on w of length $\log _{\mathrm{b}} \mathrm{n}$.
- Use E to increase number of tape 3 by I

Deciding

- Write value notHalted on tape I telling if any paths of current length haven't halted. Initially false.
- If path halts and accepts then stop and accept
- If path halts and rejects then do nothing
- If path doesn't halt then set notHalted to true
- When increase length of guide string, check value of notHalted.
- If false, then halt and reject
- If true then reset to false and continue simulation

Simulating

- Semi-deciding is easy. If any path accepts then stop and accept.
- Deciding is trickier as must be able to reject
- If any path halts and accepts then accept
- If tried all paths until they halt and then reject then reject
- How can you tell?

Other Variants

- One-way vs two-way infinite tape
- Two dimensional tape
- Multiple-track tape

TM Programming Tips

- Divide work into different phases/subroutines
- Controller has arbitrarily large"finite memory"
- ... but it can't depend on the size of the input!
- Squares can be "marked" and "unmarked" in finitely many ways.
- Take advantage of TM extensions.

UTM

- Input:
- program inputString
- where program is TM description
- Output
- result of executing program on inputString

TM's

- So far built "dedicated machines".
- Only run one program
- Specified by transition on states
- Can TM's be general-purpose computers?
- Can we create a "universal" TM with an arbitrary program and have it execute the program?
- What kind of program?

Defining UTM

- Two steps:
- Define encoding for arbitrary TM
- Describe operation when given input of TM M and input string w

Encoding TM

- States: Let $\mathrm{i}=\left\lceil\log _{2}(|\mathrm{~K}|)\right\rceil$
- Number states sequentially as i bit numbers letting start state be o...o.
- For each state t, let t^{\prime} be its associated number.
- If t is halting state y , assign code yt '
- If t is halting state n , assign code nt '
- If t any other state, assign code qt'

Encoding Tape Alphabet

- Encode in form ak where k is $\mathrm{j}=\left\lceil\log _{2}(|\Gamma|)\right\rceil$ bit number
- Example: $\Gamma=\{\square, a, b, c\} . \quad j=2$.
- $] \Rightarrow$ aоo
- a \Rightarrow aor
- b \Rightarrow aго
- c \Rightarrow air

Example Encoding States

- Suppose M has 9 states. $\left\lceil\log _{2}(9)\right\rceil=4$
- Let s' = qoooo,
- Remaining states (where y is 3 and n is 4):
- qoooi, qooio, yooir, noroo, qoioi, qoiro, qoiri, qiooo

Transitions

- The transitions:
- (state, input, state, output, move)
- Example: (qоoo,aooo,qıı,aooo, \rightarrow)
- Specify s as qooo.
- Specify M as a list of transitions.

Special Case

Encode as (qo)

Encoding Example

Consider $\mathrm{M}=(\{\mathrm{s}, \mathrm{q}, \mathrm{h}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\square, \mathrm{a}, \mathrm{b}, \mathrm{c}\}, \delta, \mathrm{s},\{\mathrm{h}\})$:

state	symbol	δ
s	-	$(9,0, \rightarrow)$
s	a	$\left(\mathrm{s}, \mathrm{p},{ }^{\text {a }}\right.$
s	b	$\left(\mathrm{g}, \mathrm{s,-},{ }^{\text {a }}\right.$
s	c	$(9, b,-)$
q	\square	$(\mathrm{s}, \mathrm{a}, \rightarrow)$
q	a	$(\mathrm{g}, \mathrm{b}, \rightarrow$)
q	b	$(9, b, \varphi)$
9	c	$\left(\begin{array}{l}\text { (}, 2,-,-)\end{array}\right.$

states/symbol	representation
${ }^{s}$	${ }^{\text {q00 }}$
q	${ }^{\text {q01 }}$
${ }^{h}$	${ }^{\text {h10 }}$
$口$	${ }^{\mathrm{a}} 00$
${ }^{a}$	${ }^{\mathrm{a} 01}$
b	${ }^{\mathrm{a} 10}$
${ }^{c}$	${ }^{\mathrm{a} 11}$

$<\mathrm{M}>=($ qoo,aoo,qor,aoo, \rightarrow), (qoo,aoı,qoo,aıo, \rightarrow), (qоo,aıo,qoı,aoı, \leftarrow), (qоo,aıı, qoı,aıo, $\leftarrow)$, (qoi,aoo,qоo,aoı \rightarrow), (qoi,aoı,qoı,aıo, \rightarrow), $($ qOI,aıo,qOI,aıI, $\leftarrow),($ qOI,aıı,hıI, aOI, $\leftarrow)$

Enumerating TMs

- Theorem: There exists an infinite lexicographic enumeration of:
r. All syntactically valid TMs.

2. All syntactically valid TMs with specific input alphabet Σ.
3. All syntactically valid TMs with specific input alphabet Σ and specific tape alphabet Γ.

Proof

- Fix $\Sigma=\{(),$, a, q, y, n, o, i, comma, $\rightarrow, \leftarrow\}$, ordered as listed. Then:
- Lexicographically enumerate the strings in Σ^{*}.
- As each string s is generated, check to see whether it is a syntactically valid Turing machine description. If it is, output it.
- To restrict enumeration to symbols in $\Sigma \& \Gamma$, check, in step 2 , that only alphabets of appropriate sizes allowed.
- Can now talk about the ith Turing machine

Specifying UTM

- On input $<\mathrm{M}, \mathrm{w}>, \mathrm{U}$ must:
- Halt iff M halts on w.
- If M is a deciding or semideciding machine, then:
- If M accepts, accept.
- If M rejects, reject.
- If M computes a function, then $\mathrm{U}(<\mathrm{M}, \mathrm{w}\rangle)$ must equal M(w).

Side note

- Can talk about algorithmically modifying TM's:

- Example: Make an extra copy of input and then run $<\mathrm{M}>$ on new copy.

Implementation

- ... as a 3 -tape TM:
- Tape i: M's tape.
- Tape $2:<\mathrm{M}>$, the "program" that U is running.
- Tape 3: M's state.

