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Last Time

• Showed multi-tape TM’s have no more power 
than single tape (though can be more efficient)

• Look at other variations.

Nondeterminism

• A nondeterministic TM is a six-tuple (K, Σ, Γ, 
Δ, s, H) where Δ is a subset of: 
            ((K - H) × Γ) × (K × Γ × {←, →})

Deciding

• Let M = (K, Σ, Γ, Δ, s, {y, n}) be a 
nondeterministic TM, and w be element of Σ*.  

• M accepts w iff at least one of its computations accepts.

• M rejects w iff all of its computations reject.

• M decides a language L ⊆ Σ* iff, ∀w:

• There is a finite number of paths that M can follow on input w,

• All of those paths halt, and

• w ∈ L iff M accepts w.



Nondeterministic 
Programming

• L = {w ∈ {0, 1}* : w is the binary encoding of a 
composite number}.  M decides L by doing the 
following on input w:

• Nondeterministically choose two positive binary 
numbers such that: 2 ≤ |p|, |q| ≤ |w|.  Write them on the 
tape, after w, separated by ;

•  ❑110011;111;1111❑❑

• Multiply p and q and put the answer, A, on the tape, in 
place of p and q.

•  ❑110011;1011111❑❑

• Compare A and w.  If equal, go to y.  Else go to n.

non-prime

Semi-Deciding

• Let M = (K, Σ, Γ, Δ, s, H) be a nondeterministic 
TM. 

• We say that M semi-decides a language L ⊆ Σ* iff 
for all w ∈ Σ*:     w ∈ L iff  
(s, ❑w) yields at least one accepting configuration.

Example

• Let L = {descriptions of TMs that halt on at 
least one string}.  

• Let <M> mean the string that describes some TM M.  

• S semi-decides L as follows on input <M>:

• Nondeterministically choose a string w in ΣM* and write 
it on the tape.

• Run M on w

• See later that semi-deciding is best we can do.

Non-deterministic Functions

• M computes a function f iff, ∀w ∈ Σ* :

• All of M’s computations halt, and

• All of M’s computations result in f(w).



Review

• Non-determinism not more powerful for FSM’s

• Subset construction

• PDA’s?

• Which is TM more like?

Non-determinism Not More 
Powerful!

• Theorem: If a nondeterministic TM M decides 
or semi-decides a language, or computes a 
function, then there is a standard TM M' 
deciding or semi-deciding the same language or 
computing the same function.

• Proof: (by construction).  Must do separate 
constructions for deciding/semi-deciding and 
for function computation. 

Proof Sketch

• Try all possible computation paths

• Because computations may be infinite, need to 
do breadth first search

• Use 3 tapes

• 1st for input (never modified)

• 2nd for computations

• 3rd for string specifying which of possible instructions to 
take

Proof Sketch

• Let b be largest number of possible transitions 
from any configuration.

• Encode computation of length n as n-digit 
number written in base b:

• E.g.  If b = 3, then 10221 encodes computation of length 
5.

• Let E be TM program that takes a number m 
in base b and returns m+1 in base b.



Computation

• Start with input w on tape 1, 0 on tape 3

• Loop:

• Copy input w from tape 1 to tape 2

• Using number n on tape 3 to select steps to take in 
simulating run on w of length logb n.

• Use E to increase number of tape 3 by 1

Simulating

• Semi-deciding is easy.  If any path accepts then 
stop and accept.

• Deciding is trickier as must be able to reject

• If any path halts and accepts then accept

• If tried all paths until they halt and then reject then 
reject

• How can you tell?

Deciding
• Write value notHalted on tape 1 telling if any 

paths of current length haven’t halted.  Initially 
false.

• If path halts and accepts then stop and accept

• If path halts and rejects then do nothing

• If path doesn’t halt then set notHalted to true

• When increase length of guide string, check 
value of notHalted.

• If false, then halt and reject

• If true then reset to false and continue simulation

Other Variants

• One-way vs two-way infinite tape

• Two dimensional tape

• Multiple-track tape



TM Programming Tips

• Divide work into different phases/subroutines

• Controller has arbitrarily large“finite memory”

• … but it can’t depend on the size of the input!

• Squares can be “marked” and “unmarked” in 
finitely many ways. 

•  Take advantage of TM extensions.

TM’s

• So far built “dedicated machines”.  

• Only run one program

• Specified by transition on states

• Can TM’s be general-purpose computers?

• Can we create a “universal” TM with an arbitrary 
program and have it execute the program?

• What kind of program?

UTM

• Input:

• program  inputString

• where program is TM description

• Output

• result of executing program on inputString

Defining UTM

• Two steps:

• Define encoding for arbitrary TM

• Describe operation when given input of TM M and 
input string w



Encoding TM

• States:  Let i = ⎡log2(|K|)⎤

• Number states sequentially as i bit numbers 
letting start state be 0...0.

• For each state t, let t’ be its associated number.

• If t is halting state y, assign code yt’

• If t is halting state n, assign code nt’

• If t any other state, assign code qt’

Example Encoding States

• Suppose M has 9 states.  ⎡log2(9)⎤ = 4

• Let s’ = q0000, 

• Remaining states (where y is 3 and n is 4):

• q0001, q0010, y0011, n0100, q0101, q0110, q0111, q1000

Encoding Tape Alphabet

• Encode in form ak where k is j = ⎡log2(|Γ|)⎤ bit 
number

• Example: Γ = {❑, a, b, c}.    j = 2.

• ❑  ⇒ a00

• a   ⇒ a01

• b   ⇒ a10

• c   ⇒ a11

Transitions

• The transitions:    

• (state, input, state, output, move)

• Example:    (q000,a000,q110,a000,→)

• Specify s as q000.

• Specify M as a list of transitions.



Special Case

Encode as (q0)

Encoding Example
Consider M = ({s, q, h}, {a, b, c}, {❑, a, b, c}, δ, s, {h}):

<M> = (q00,a00,q01,a00,→), (q00,a01,q00,a10,→), 
           (q00,a10,q01,a01, ←), (q00,a11,q01,a10,←), 
           (q01,a00,q00,a01,→), (q01,a01,q01,a10,→), 

      (q01,a10,q01,a11,←), (q01,a11,h11,a01,←)

state symbol δ

s ❑ (q,❑,, →)

s a (s,b,→)

s b (q,a, ←)

s c (q,b, ←)

q ❑ (s,a,, →)

q a (q,b,→)

q b (q,b, ←)

q c (h,a, ←)

state/symbol representation

s q00

q q01

h h10

❑ a00

a a01

b a10

c a11

Lexicographic Order
• of strings in Σ* as defined in text:

• if |u| < |v|, then u < v

• if |u| = |v|, then u < v if u precedes v in dictionary order

• Example of lexicographic order over {0,1}*

• ε, 0, 1, 00, 01, 10, 11, 000, …

• Feature: Every string occurs in finite position

• Dictionary order: ε, 0, 00, 000, … 

• Never get to 1!

Enumerating TMs

• Theorem: There exists an infinite lexicographic 
enumeration of:
1. All syntactically valid TMs.

2. All syntactically valid TMs with specific input alphabet 
Σ.

3. All syntactically valid TMs with specific input alphabet Σ 
and specific tape alphabet Γ.     



Proof

• Fix Σ = {(, ), a, q, y, n, 0, 1, comma, →, ←}, 
ordered as listed.  Then:

• Lexicographically enumerate the strings in Σ*.

• As each string s is generated, check to see whether it is a 
syntactically valid Turing machine description.  If it is, 
output it.

• To restrict enumeration to symbols in Σ & Γ, check, in 
step 2, that only alphabets of appropriate sizes allowed.

• Can now talk about the ith Turing machine

Side note

• Can talk about algorithmically modifying TM’s:

• Example:  Make an extra copy of input and 
then run <M> on new copy.

Specifying UTM

• On input <M, w>, U must:

• Halt iff M halts on w.

• If M is a deciding or semideciding machine, then:

• If M accepts, accept.

• If M rejects, reject.

• If M computes a function, then U(<M, w>) must equal 
M(w).

Implementation

• ... as a 3-tape TM:

• Tape 1: M’s tape.  

• Tape 2: <M>, the “program” that U is running.

• Tape 3: M’s state.


