Lecture 17: Turing Machine

Last Time

Variants
* Showed multi-tape TM’s have no more power
CSCI 101 than single tape (though can be more efficient)
Spri
pring, 2019 e Look at other variations.
Kim Bruce
Nondeterminism Deciding

* A nondeterministic TM is a six-tuple (K, =, T,
A, s, H) where A is a subset of:
(K-H) D) xKxTx{<, =D

§, dabab

/\

q, #abab q;, Jabab

/\

q;, Jabab ¢, Qbbab

eLee M=K, Z T, A,s,{y,nD) bea
nondeterministic TM, and w be element of Z*.
* M accepts w iff at least one of its computations accepts.
* M rejects w iff all of its computations reject.
* M decides a language L C =* iff, Vw:
e There is a finite number of paths that M can follow on input w,

e All of those paths halt, and

o wELIiff M accepts w.




Nondeterministic
Programming

e L={wE{o, }*: wis the binary encoding of a
composite number}. M decides L by doing the
tollowing on input w:

ponprime ., Nondeterministically choose two positive binary

numbers such that: 2 < Ipl, Iql < twl. Write them on the
tape, after w, separated by ;

e Qmoorrnrdd

* Multiply p and q and put the answer, A, on the tape, in
place of p and q.

e Qoorrroridd

o Compare A and w. If equal, go toy. Else go to n.

Semi-Deciding

e Let M=(K, 2, T, A, s, H) be a nondeterministic
TM.

e We say that M semi-decides a language L C =* iff
forallwe>*: weLiff
(s, dw) yields at least one accepting configuration.

Example

e Let L = {descriptions of TMs that halt on at
least one string}.

e Let <M> mean the string that describes some TM M.

* S semi-decides L as follows on input <M>:

* Nondeterministically choose a string w in 2p* and write
it on the tape.

e Run M onw

* See later that semi-deciding is best we can do.

Non-deterministic Functions

* M computes a function f iff, Vw € X* :
e All of M’s computations halt, and

e All of M’s computations result in f(w).




Review

e Non-determinism not more powerful for FSM’s

e Subset construction
e PDA’s?
e Which is TM more like?

Non-determinism Not More
Powerful!

* Theorem: If a nondeterministic TM M decides
or semi-decides a language, or computes a
function, then there is a standard TM M'
deciding or semi-deciding the same language or
computing the same function.

* Proof: (by construction). Must do separate
constructions for deciding/semi-deciding and
for function computation.

Proof Sketch

¢ Try all possible computation paths

 Because computations may be infinite, need to
do breadth first search
¢ Use 3 tapes
o 1st for input (never modified)
e 2nd for computations

o 3rd for string specifying which of possible instructions to
take

Proof Sketch

* Let b be largest number of possible transitions
from any configuration.

e Encode computation of length n as n-digit
number written in base b:

e E.g. Ifb =3, then 10221 encodes computation of length
5

e Let E be TM program that takes a number m
in base b and returns m-+1 in base b.




Computation

e Start with input w on tape 1, 0 on tape 3

* Loop:
o Copy input w from tape 1 to tape 2

o Using number n on tape 3 to select steps to take in
simulating run on w of length logy n.

* Use E to increase number of tape 3 by 1

Simulating

* Semi-deciding is easy. If any path accepts then
stop and accept.

 Deciding is trickier as must be able to reject
e If any path halts and accepts then accept

e If tried all paths until they halt and then reject then
reject

o How can you tell?

Deciding

o Write value notHalted on tape 1 telling if any
paths of current length haven’t halted. Initially
false.

e If path halts and accepts then stop and accept
e If path halts and rejects then do nothing
e If path doesn’t halt then set notHalted to true
* When increase length of guide string, check
value of notHalted.
o If false, then halt and reject

o If true then reset to false and continue simulation

Other Variants

* One-way vs two-way infinite tape
* Two dimensional tape

* Multiple-track tape




TM Programming Tips

e Divide work into different phases/subroutines

* Controller has arbitrarily large“finite memory”

e ... but it can’t depend on the size of the input!

e Squares can be “marked” and “unmarked” in
finitely many ways.

* Take advantage of TM extensions.

TM’s

e So far built “dedicated machines”.
* Only run one program

* Specified by transition on states

* Can TM’s be general-purpose computers?

e Can we create a “universal” TM with an arbitrary
program and have it execute the program?

e What kind of program?

UTM

¢ Input:

* program inputString

e where program is TM description
e Output

e result of executing program on inputString

Defining UTM

* Two steps:
o Define encoding for arbitrary TM

o Describe operation when given input of TM M and
input string w




Encoding TM

e States: Leti=[log2(KD]

* Number states sequentially as i bit numbers
letting start state be o...0.

¢ For each state t, let t’ be its associated number.
e If t is halting state y, assign code yt’
e If t is halting state n, assign code nt’

e If t any other state, assign code qt’

Example Encoding States

e Suppose M has 9 states. [log.(9)] = 4
® Let s’ =qoooo,

* Remaining states (where y is 3 and n is 4):

® QOO0O0I, OOIO, yOOII, NOI00, OIOI, qOII0, qOIII, I00O

Encoding Tape Alphabet

* Encode in form ak where k is j = [log2(IT')] bit
number
* Example: I'={1,a,b,c}. j=2.
e U = aoo
¢ a = aor
e b = aio

¢ ¢ = air

Transitions

® The transitions:

e (state, input, state, output, move)
* Example: (q000,2000,q110,a000,—)
e Specify s as qooo.

* Specify M as a list of transitions.




Special Case

O,

Encode as (qo)

Encoding Example

Consider M = ({s, q, h}, {a, b, ¢}, {Q, a, b, ¢}, §, s, {h):

state symbol S
Q (¢.0. =) s q00
a (s,0,—) q q01
b (.2, <) h hl
c (.0, <) - 0
a a0l
q Q (5,2, =)
b alo
q a (¢.0,=)
all
q B (g0, <)
q c (ha, <)

<M> = (qo00,200,q01,200,—), (q00,201,q00,a10,~>),
(qoo,a10,qo1,aor, <), (qoo,arr,qo1,aro,<-),
(qor1,200,qo00,a01,—), (qo1,201,qO1,a10,~>),
(qor,aro0,qor,ar1,<-), (qor,arr,hir,aor,<)

Lexicographic Order

* of strings in =Z* as defined in text:
o iflul<Ivl, thenu<v
o iflul = Ivl, then u < v if u precedes v in dictionary order
 Example of lexicographic order over {o,1}*
® ¢ 0,1, 00, OI, IO, II, 000, ...
e Feature: Every string occurs in finite position
* Dictionary order: €, 0, 00, 000, ...

¢ Never get to 1!

Enumerating TMs

e Theorem: There exists an infinite lexicographic
enumeration of:

1. All syntactically valid TM:s.

2. All syntactically valid TMs with specific input alphabet
z.

3. All syntactically valid TMs with specific input alphabet =
and specific tape alphabet I.




Proof

* FixX2={(), a, q,y, n, 0, 1, comma, —, <},
ordered as listed. Then:

¢ Lexicographically enumerate the strings in >*.

o As each string s is generated, check to see whether it is a
syntactically valid Turing machine description. If it is,
output it.

e To restrict enumeration to symbols in = & I, check, in
step 2, that only alphabets of appropriate sizes allowed.

e Can now talk about the ith Turing machine

Side note

e Can talk about algorithmically modifying TM’s:

<M;> ——> — <M,>

e Example: Make an extra copy of input and
then run <M> on new copy.

Specifying UTM

® On input <M, w>, U must:
o Halt iff M halts on w.
o If M is a deciding or semideciding machine, then:

e If M accepts, accept.

o If M rejects, reject.

e If M computes a function, then U(<M, w>) must equal
M(w).

Implementation

e ...as a3tape TM:
e Tape 1: M’s tape.
o Tape 2: <M>, the “program” that U is running.

o Tape 3: M’s state.




