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Definition

• Turing machine M is sixtuple (K, Σ, Γ, δ, s, H):

• K is a finite set of states;

• Σ is the input alphabet, which does not contain ☐;

• ☐ represents “blank” 

• Γ ⊇ Σ ∪ {☐} is the tape alphabet.  

• s ∈ K is the initial state;

• H ⊆ K is the set of halting states;

• δ is ...

Definition (cont)

• δ is the transition function:
       (K - H)         ×  Γ      to      K   ×   Γ × {→, ←}

       non-halting     × tape            state × tape    ×    action  
          state                 char                   char       (R or L)

• At each step, look at what is on tape and based 
on current state, move to new state, write 
replacement on tape, and move left or right.

Configurations

• A configuration of a Turing machine 
M = (K, Σ, Γ, s, H, δ) is an element of:

K   × ((Γ- {☐}) Γ*) ∪ {ε}  ×  Γ  ×  (Γ* (Γ- {☐}))  ∪ {ε}

state        up                  scanned         after
       to scanned            square         scanned 
          square                    square



Examples:

Convenient shorthand:
     (1) (q, ab, b, b) = (q, abbb)
     (2) (q, ε, ☐, aabb) = (q, ☐aabb)   

Initial configuration is always (s, ☐w).

Configurations always finite!!

Computations

• (q1, w1) ⊢M (q2, w2) iff (q2, w2) follows from 
(q1, w1) via δ in one step.

• A detailed definition can be given, but intuition clear.

• |-M* is the reflexive, transitive closure of |-M.

• C1 yields C2 if C1  |-M*  C2.

• A path is a sequence C0, C1, …, Cn s.t. C0 is 
initial config and C0 |-M C1 |-M C2 |-M … |-M  Cn.

• A computation by M is a path that halts.

Programming TMs is Hard!

• Define some basic machines

• Symbol writing machines

• For each x ∈ Γ, define Mx, written just x, to be a 
machine that writes x.

• Head moving machines

• R: for each x ∈ Γ, δ(s, x) = (h, x, →)

• L: for each x ∈ Γ, δ(s, x) = (h, x, ←)

Programming TMs

• Machines that simply halt: 

• h, which simply halts.  

• n, which halts and rejects.

• y, which halts and accepts.



Combining

• M1 M2:  Run M1 until it halts, then start M2 in 
its start state.

• M1           M2  
 
                M3

• Run M1 until it halts, then based on condition, run M2 
or M3

cond2

cond1

Useful Machines
Find the first blank square to 

the right of the current square.

  Find the first blank square to 
the left of the current square.

Find the first nonblank square to 
the right of the current square.

Find the first nonblank square to 
the left of the current square 

R❑

L¬❑

R¬❑

L❑

Example

Input:  ❑w    w ∈ {1}*
Output:     ❑w3 

Example: ❑111❑❑❑❑❑❑❑❑❑❑❑❑❑❑  

TM recognizes languages

• Starting configuration: ❑w❑, w contains no ❑s

• Let M = (K, Σ, Γ, δ, s, {y, n}). 

• M accepts w iff (s, ❑w) |-M*  (y, wʹ) for some wʹ.

• M rejects w iff (s, ❑w) |-M*  (n, wʹ) for some wʹ.



TM recognizes languages

• M decides a language L ⊆ Σ* iff for any string w ∈ Σ*:

• if w ∈ L then M accepts w, and

• if w ∉ L then M rejects w.

• A language L is decidable iff there is a Turing machine M 
that decides it.  In this case, we will say that L is in D.

Example

1. Move right onto w. If the first character is ❑, halt and accept. 
2. Loop: 
   2.1. Mark off an a with a 1. 
   2.2. Move right to the first b and mark it off with a 2.  
         If there isn’t one, or if there is a c first, halt and reject.  
   2.3. Move right to the first c and mark it off with a 3.  
         If there isn’t one, or if there is an a first, halt and reject. 
   2.4. Move all the way back to the left, then right again past all the 1’s  
          (the marked off a’s).  
         If there is another a, go back to the top of the loop.  
         If there isn’t, exit the loop.

AnBnCn = {anbncn : n ≥ 0}
Example:  ❑aabbcc❑ Accepted
Example:  ❑aaccb❑   Rejected

Example

3. All a’s have found matching b’s and c’s and the read/ write head is 
just to the right of the region of marked off a’s. Continue moving left 
to right to verify that all bs and cs have been marked. If they have, 
halt and accept. Otherwise halt and reject.

AnBnCn = {anbncn : n ≥ 0}
Example:  ❑aabbcc❑ Accepted
Example:  ❑aaccb❑   Rejected

Deciding Example
AnBnCn = {anbncn : n ≥ 0}
Example:  ❑aabbcc❑ Accepted
Example:  ❑aaccb❑   Rejected



Semi-Deciding Language

• M semidecides L iff, for any string w ∈ ΣM*:

• w ∈ L → M accepts w

• w ∉ L → M does not accept w.   
M may either: reject or fail to halt.

• L is semidecidable iff there is a Turing machine 
that semidecides it.  

• Let SD be the set of all semidecidable languages. 

Example

• Let L = b*a(a ∪ b)*

• We can build M to semidecide L:

1. Loop

    1.1 Move one square to the right.   
         If the character under the read head is an a,  
               halt and accept, otherwise repeat loop

• Accepts if in, but goes forever otherwise

• Can easily be decided, too, but just not by this M

Computing Functions

• Let M = (K, Σ, Γ, δ, s, {h}).  Its initial 
configuration is (s, ❑w).

• Define  M(w) = z  iff  (s, ❑w) |-M* (h, ❑z).  

• Let Σʹ ⊆ Σ be M’s output alphabet.  

• Let f : Σ* → Σʹ*.  Say M computes f iff ∀w ∈ Σ*:

• If w is an input on which f is defined: M(w) = f(w).

• Otherwise M(w) does not halt.

Recursive Functions

• A (total) function f is recursive or computable iff 
there is a Turing machine M that computes it 
and that always halts.



Numeric Functions

• Let valuek(n) return the nonnegative integer 
that is encoded, base k, by the string n.  

• For example:  value8(101) = 65.  

• M computes f from ℕm to ℕ iff, for some k:

• valuek(M(n1;n2;…nm)) = f(valuek(n1), … valuek(nm)).

Example

• Example:  succ(n) = n + 1

• Represent n in binary.  So n ∈ 0 ∪ 1{0, 1}*

• Input: ❑n❑❑❑  Output: ❑n+1❑ 
          ❑1111❑❑ Output: ❑10000❑

Decisions, decisions

• If L is decidable then so is its complement.

• Why?

• If L and its complement are both 
semidecidable then L is decidable.

Why such a primitive model?

• TM’s are more powerful than FSM, PDAs

• ... and are much harder to work with than real 
computers

• Why?

• Simplicity makes it easer to reason formally

• Important that real computers NOT more powerful!



Extensions

• Claim:  Every extended TM is equivalent to the 
basic machine.

• Possible extensions:

• Multiple tapes

• Nondeterministic

Multiple Tapes

Multitape transitions

• The transition function for a k-tape Turing 
machine:

• ((K-H) ,  Γ1                (K , Γ1ʹ, {←, →, ↑} 
            ,  Γ2                       , Γ2ʹ, {←, →, ↑} 
            ,   .    to               ,   . 
            ,   .                      ,   . 
            ,   Γk)                      , Γkʹ, {←, →, ↑})

• Input: as before on tape 1, others blank.

• Output: as before on tape 1, others ignored.

Copying a String

start
config

final
config



Copying a String Another Example

• Adding two numbers

• Start w/both on first tape

• Copy one to second tape

• Move to right of both, start adding

No more power!

• Theorem: Let M be a k-tape Turing machine 
for some k ≥ 1.  Then there is a standard TM 
M' where Σ ⊆ Σ', and:

• On input x, M halts with output z on the first tape iff M' 
halts in the same state with z on its tape.       

• On input x, if M halts in n steps, M' halts in O(n2) steps.

• Proof: By construction.

Representation
• Encode:

• As

• Alphabet (Σ') of M' = Γ ∪ (Γ × {0, 1})k


