
Lecture 15: Parsing & Turing
Machines

CSCI 101
Spring, 2019

Kim Bruce

Need Unambiguous

• No table entry should have more than one production
to ensure it’s unambiguous, as otherwise we
don’t know which rule to apply.

• Laws of predictive parsing:
- If A ::= α1 | ...| αn then for all i̸≠ j,  

First(αi) ∩ First(αj) = ∅.

- If X →* ε, then First(X) ∩ Follow(X) = ∅.

• Laws of predictive parsing:
- If A ::= α1 | ...| αn then for all i̸≠ j,  

First(αi) ∩ First(αj) = ∅.

- If X →* ε, then First(X) ∩ Follow(X) = ∅.

• 2nd is OK for arithmetic:
- FIRST(<termTail>) = { +, -, ε }

- FOLLOW(<termTail>) = { EOF,) }

- FIRST(<factorTail>) = { *, /, ε }

- FOLLOW(<factorTail>) = { +, -, EOF,) }

}
}

no overlap!

Non-
terminals ID NUM Addop Mulop () EOF

<exp> 1 1 1
<termTail> 2 3 3

<term> 4 4 4
<factTail> 6 5 6 6
<factor> 9 8 7
<addop> 10
<mulop> 11

Read off from table which production to apply!

See ArithParse.hs

Writing a Parser

• Use table to drive parser:

• Emulate pda: StackParseArith.hs

• Recursive descent: ParseArith.hs

• Build Abstract Syntax Tree!

More Options

• Parser Combinators
- Domain specific language for parsing.

- Even easier to tie to grammar than recursive descent

- Built into Haskell and Scala, definable elsewhere

Parser Combinators in Scala

def multOp = ("*" | "/")

def addOp = ("+" | "-")

def factor = "(" ~> expr <~ ")" | numericLit ^^ {...}

def term = factor ~ (factorTail*) ^^ {...}

def factorTail = multOp ~ factor ^^{...}

def expr = term ~ (termTail*) ^^ {...}

def termTail = addOp ~ term ^^{...}

Syntax tree building code
omitted

Where are we?

Formal Syntax

• Syntax:
- Readable, writable, easy to translate, unambiguous, ...

• Formal Grammars:
- Backus & Naur, Chomsky

- First used in ALGOL 60 Report - formal description

- Generative description of language.

• Language is set of strings. (E.g. all legal C++
programs)

Example
<exp> ⇒ <term> | <exp> <addop> <term>

<term> ⇒ <factor> | <term> <multop> <factor>

<factor> ⇒ <id> | <literal> | (<exp>)

<id> ⇒ a | b | c | d

<literal> ⇒ <digit> | <digit> <literal>

<digit> ⇒ 0 | 1 | 2 | ... | 9

<addop> ⇒ + | - | or

<multop> ⇒ * | / | div | mod | and

Extended BNF

• Extended BNF handy:
- item enclosed in square brackets is optional

• <conditional> ⇒ if <expression> then <statement>  
 [else <statement>]

- item enclosed in curly brackets means zero or more
occurrences

• <literal> ⇒ <digit> { <digit> }

Syntax Diagrams

• Syntax diagrams - alternative to BNF.
- Syntax diagrams are never directly recursive, use

"loops" instead.

Ambiguity
<statement> ⇒ <unconditional> | <conditional>

 <unconditional> ⇒ <assignment> | <for loop> |
 "{" { <statement> } "}"

 <conditional> ⇒ if (<expression>) <statement> |
 if (<expression>) <statement>
 else <statement>

How do you parse:

 if (exp1)
 if (exp2)
 stat1;
 else
 stat2;

Resolving Ambiguity

• Pascal, C, C++, and Java rule:
- else attached to nearest then.

- to get other form, use { ... }

• Modula-2 and Algol 68
- No “{“, only “}” (except write as “end”)

• Not a problem in LISP/Racket/ML/Haskell
conditional expressions

• Ambiguity in general is undecidable

Chomsky Hierarchy

• Chomsky developed mathematical theory of
programming languages:
- type 0: recursively enumerable

- type 1: context-sensitive

- type 2: context-free

- type 3: regular

• BNF = context-free, recognized by pda

Beyond Context-Free

• Not all aspects of PL’s are context-free
- Declare before use, goto target exist

• Formal description of syntax allows:
- programmer to generate syntactically correct

programs

- parser to recognize syntactically correct programs

• Parser-generators: LEX, YACC, ANTLR, etc.
- formal spec of syntax allows automatic creation of

recognizers

Turing Machines

Beyond PDA’s

• Grammars and machine models rich enough to
represent every effective algorithm

• FSM’s have no extra storage space

• PDA’s can use unbounded push-down stack

• Expand to unrestricted (but finite) storage

Models

• Many possible:

• RAM: FSM with potentially infinite memory directly
addressable.

• Turing Machine: FSM with potentially infinite (both
directions) tape for storage.

• TM historically most important, but RAM more natural
today.

• Many other models possible -- but all equivalent!!

• While language, lambda calculus, …

What is good model?

• Powerful enough to describe all computations

• Simple enough that we can reason formally
about it

Turing Machines

• At each step, the machine must:

• choose its next state,

• write on the current square, and

• move left or right.

Definition

• Turing machine M is sixtuple (K, Σ, Γ, δ, s, H):

• K is a finite set of states;

• Σ is the input alphabet, which does not contain ☐;

• ☐ represents “blank”

• Γ ⊇ Σ ∪ {☐} is the tape alphabet.

• s ∈ K is the initial state;

• H ⊆ K is the set of halting states;

• δ is ...

Definition (cont)

• δ is the transition function:
 (K - H) × Γ to K × Γ × {→, ←}

 non-halting × tape state × tape × action  
 state char char (R or L)

• At each step, look at what is on tape and based
on current state, move to new state, write
replacement on tape, and move left or right.

Notes on Definition

• The input tape is infinite in both directions.

• δ is a function, so defining deterministic TMs.

• δ must be defined for all state, input pairs
unless the state is a halting state.

• TMs do not necessarily halt.

• Turing machines generate output so can
compute functions.

• Takes contents of tape at start to contents at end.

Example

• Input to M is a string in {aibj, 0 ≤ j ≤ i},

• Goal: adds b’s to make # b’s = # a’s.

• Input to M looks like: 
 

• Output should be: 

TM Program
K = {1, 2, 3, 4, 5, 6}, Σ = {a, b}, Γ = {a, b, ☐, $, #},
s = 1, H = {6}, δ =

Questions:

• How is my laptop more like a Finite State
Machine than like a Turing Machine?

• How is my laptop more like a Turing Machine
than like a Finite State Machine?

