Lecture 15: Parsing & Turing Machines

CSCI 101 Spring, 2019

Kim Bruce

Need Unambiguous

- No table entry should have more than one production to ensure it's unambiguous, as otherwise we don't know which rule to apply.
- Laws of predictive parsing:
 - If A ::= $\alpha_i \mid ... \mid \alpha_n$ then for all $i \neq j$, First $(\alpha_i) \cap$ First $(\alpha_j) = \emptyset$.
 - If $X \rightarrow^* \varepsilon$, then $First(X) \cap Follow(X) = \emptyset$.

- Laws of predictive parsing:
 - If A ::= $\alpha_i \mid ... \mid \alpha_n$ then for all $i \neq j$, First $(\alpha_i) \cap$ First $(\alpha_j) = \emptyset$.
 - If $X \rightarrow^* \varepsilon$, then $First(X) \cap Follow(X) = \emptyset$.

no overlap!

- 2nd is OK for arithmetic:
 - FIRST(<termTail>) = { +, -, ε }
 - FOLLOW(<termTail>) = { EOF,) }
 - FIRST(<factorTail>) = { *, /, ϵ }
 - FOLLOW(<factorTail>) = { +, -, EOF,) }

See ArithParse.hs

Non- terminals	ID	NUM	Addop	Mulop	()	EOF
<exp></exp>	Ι	I			Ι		
<termtail></termtail>			2			3	3
<term></term>	4	4			4		
<facttail></facttail>			6	5		6	6
<factor></factor>	9	8			7		
<addop></addop>			IO				
<mulop></mulop>				II			

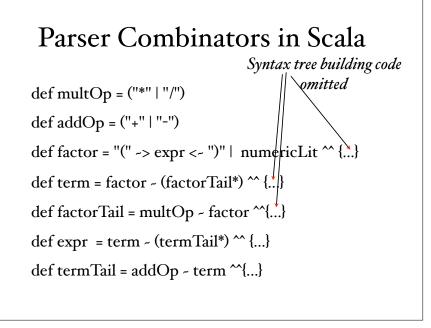
Read off from table which production to apply!

Writing a Parser

- Use table to drive parser:
 - Emulate pda: StackParseArith.hs
 - Recursive descent: ParseArith.hs
 - Build Abstract Syntax Tree!

More Options

- Parser Combinators
 - Domain specific language for parsing.
 - Even easier to tie to grammar than recursive descent
 - Built into Haskell and Scala, definable elsewhere



Where are we?

Formal Syntax

- Syntax:
 - Readable, writable, easy to translate, unambiguous, ...
- Formal Grammars:
 - Backus & Naur, Chomsky
 - First used in ALGOL 60 Report formal description
 - Generative description of language.
- Language is set of strings. (E.g. all legal C++ programs)

Example

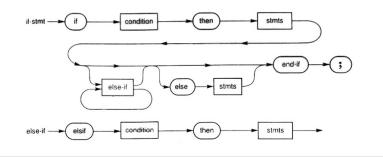
<exp> ⇒</exp>	<term> <exp> <addop> <term></term></addop></exp></term>
<term> ⇒</term>	<factor> <term> <multop> <factor></factor></multop></term></factor>
$< factor > \Rightarrow$	<id> <literal> (<exp>)</exp></literal></id>
<id>> ⇒</id>	a b c d
$<$ literal> \Rightarrow	<digit> <digit> <literal></literal></digit></digit>
<digit> ⇒</digit>	0 1 2 9
<addop> ⇒</addop>	+ - or
<multop> \Rightarrow</multop>	* / div mod and

Extended BNF

- Extended BNF handy:
 - item enclosed in square brackets is optional
 - <conditional> ⇒ if <expression> then <statement> [else <statement>]
 - item enclosed in curly brackets means zero or more occurrences
 - <literal> \Rightarrow <digit> { <digit> }

Syntax Diagrams

- Syntax diagrams alternative to BNF.
 - Syntax diagrams are never directly recursive, use "loops" instead.



Ambiguity

<statement> ⇒ <unconditional> | <conditional> <unconditional> ⇒ <assignment> | <for loop> | "{" { <statement> } "}" <conditional> ⇒ if (<expression>) <statement> | if (<expression>) <statement> else <statement> How do you parse:

if (exp1)
if (exp2)
stat1;
else
 stat2;

Resolving Ambiguity

- Pascal, C, C++, and Java rule:
 - else attached to nearest then.
 - to get other form, use { ... }
- Modula-2 and Algol 68
 - No "{", only "}" (except write as "end")
- Not a problem in LISP/Racket/ML/Haskell conditional *expressions*
- Ambiguity in general is undecidable

Chomsky Hierarchy

- Chomsky developed mathematical theory of programming languages:
 - type 0: recursively enumerable
 - type 1: context-sensitive
 - type 2: context-free
 - type 3: regular
- BNF = context-free, recognized by pda

Beyond Context-Free

- Not all aspects of PL's are context-free
 - Declare before use, goto target exist
- Formal description of syntax allows:
 - programmer to generate syntactically correct programs
 - parser to recognize syntactically correct programs
- Parser-generators: LEX, YACC, ANTLR, etc.
 - formal spec of syntax allows automatic creation of recognizers

Turing Machines

Beyond PDA's

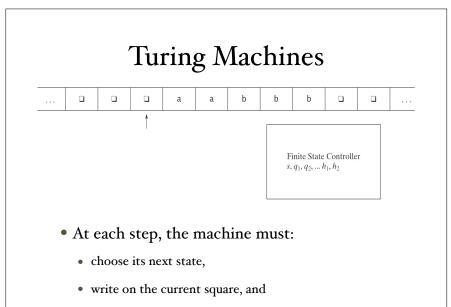
- Grammars and machine models rich enough to represent every effective algorithm
- FSM's have no extra storage space
- PDA's can use unbounded push-down stack
- Expand to unrestricted (but finite) storage

Models

- Many possible:
 - RAM: FSM with potentially infinite memory directly addressable.
 - Turing Machine: FSM with potentially infinite (both directions) tape for storage.
 - TM historically most important, but RAM more natural today.
 - Many other models possible -- but all equivalent!!
 - While language, lambda calculus, ...

What is good model?

- Powerful enough to describe all computations
- Simple enough that we can reason formally about it



• move left or right.

Definition

- Turing machine M is sixtuple (K, Σ , Γ , δ , s, H):
 - K is a finite set of states;
 - Σ is the input alphabet, which does not contain \Box ;
 - 🗆 represents "blank"
 - $\Gamma \supseteq \Sigma \cup \{\Box\}$ is the tape alphabet.
 - $s \in K$ is the initial state;
 - $H \subseteq K$ is the set of halting states;
 - δ is ...

Definition (cont)

• δ is the transition function:

(K - H)	×Γ	to	K ×	Γ	×	{→, ←}

non-halting	× tape	state × tape	×	action
state	char	char		(R or L)

• At each step, look at what is on tape and based on current state, move to new state, write replacement on tape, and move left or right.

Notes on Definition

- The input tape is infinite in both directions.
- δ is a function, so defining deterministic TMs.
- δ must be defined for all state, input pairs unless the state is a halting state.
- TMs do not necessarily halt.
- Turing machines generate output so can compute functions.
 - Takes contents of tape at start to contents at end.

