Lecture 15: Parsing \& Turing Machines

CSCI ioi
Spring, 2019
Kim Bruce

Need Unambiguous

- No table entry should have more than one production to ensure it's unambiguous, as otherwise we don't know which rule to apply.
- Laws of predictive parsing:
- If $A:=\alpha_{1}|\ldots| \alpha_{n}$ then for all $i \neq j$, First $\left(\alpha_{i}\right) \cap$ First $\left(\alpha_{j}\right)=\varnothing$.
- If $\mathrm{X} \rightarrow^{*} \varepsilon$, then First $(\mathrm{X}) \cap$ Follow $(\mathrm{X})=\varnothing$.

See ArithParse.bs							
$\begin{gathered} \text { Non- } \\ \text { terminals } \end{gathered}$	$I D$	NUM	Addop	Mulop	()	EOF
<exp>	I	I			I		
<termTaib			2			3	3
<term>	4	4			4		
<factTail			6	5		6	6
<factor>	9	8			7		
<addop>			IO				
<mulop>				II			
Read off from table which production to apply!							

Writing a Parser

- Use table to drive parser:
- Emulate pda: StackParseArith.hs
- Recursive descent: ParseArith.hs
- Build Abstract Syntax Tree!

Parser Combinators in Scala

Syntax tree building code
def multOp = ("*" | "/")
def addOp = ("+" | "-")
def factor = "(" \rightarrow expr <-")"| numericLit ${ }^{\wedge}\{\ldots\}$
def term $=$ factor $\sim\left(\text { factorTail }{ }^{*}\right)^{\wedge}\{$.. $\left.\}\right\}$
def factorTail $=$ multOp \sim factor ${ }^{\wedge}\{. .$.
def expr $=$ term $\sim(\text { termTail })^{\wedge}{ }^{\wedge}\{\ldots\}$
def termTail $=\operatorname{addOp} \sim \operatorname{term}{ }^{\wedge}\{\ldots\}$

More Options

- Parser Combinators
- Domain specific language for parsing.
- Even easier to tie to grammar than recursive descent
- Built into Haskell and Scala, definable elsewhere

Formal Syntax

- Syntax:
- Readable, writable, easy to translate, unambiguous, ...
- Formal Grammars:
- Backus \& Naur, Chomsky
- First used in ALGOL 6o Report - formal description
- Generative description of language.
- Language is set of strings. (E.g. all legal C++ programs)

Example

```
<exp> | <term> | <exp> <addop> <term>
<term> | <factor> | <term> <multop> <factor>
<factor> = <id> | <literal> | (<exp>)
<id> }\quad=>\quad\textrm{a}|\textrm{b}|\textrm{c}|\textrm{d
<literal> = <digit> | <digit> <literal>
<digit> }=>0||\mp@code{| 2 | ... | 9
<addop> }=>+|-| o
<multop> = * | / | div | mod | and
```


Extended BNF

- Extended BNF handy:
- item enclosed in square brackets is optional
- <conditional> \Rightarrow if <expression> then <statement>
[else <statement>]
- item enclosed in curly brackets means zero or more occurrences
- <literal> \Rightarrow <digit> $\{<$ digit> $\}$

Syntax Diagrams

- Syntax diagrams - alternative to BNF.
- Syntax diagrams are never directly recursive, use "loops" instead.

Ambiguity

```
<statement> => <unconditional> | <conditional>
<unconditional> = <assignment> | <for loop> |
                            "{" { <statement> } "}"
<conditional> => if (<expression>) <statement> |
                        if (<expression>) <statement>
                                    else <statement>
How do you parse:
if (exp1)
if (exp2)
stat1;
else
stat2;
```


Resolving Ambiguity

- Pascal, C, C++, and Java rule:
- else attached to nearest then.
- to get other form, use $\{. .$.
- Modula-2 and Algol 68
- No "〔", only "〕" (except write as "end")
- Not a problem in LISP/Racket/ML/Haskell conditional expressions
- Ambiguity in general is undecidable

Beyond Context-Free

- Not all aspects of PL's are context-free
- Declare before use, goto target exist
- Formal description of syntax allows:
- programmer to generate syntactically correct programs
- parser to recognize syntactically correct programs
- Parser-generators: LEX, YACC, ANTLR, etc.
- formal spec of syntax allows automatic creation of recognizers

Turing Machines

Models

- Many possible:
- RAM: FSM with potentially infinite memory directly addressable.
- Turing Machine: FSM with potentially infinite (both directions) tape for storage.
- TM historically most important, but RAM more natural today.
- Many other models possible -- but all equivalent!!
- While language, lambda calculus, ...

Beyond PDA's

- Grammars and machine models rich enough to represent every effective algorithm
- FSM's have no extra storage space
- PDA's can use unbounded push-down stack
- Expand to unrestricted (but finite) storage

What is good model?

- Powerful enough to describe all computations
- Simple enough that we can reason formally about it

Turing Machines

- At each step, the machine must:
- choose its next state,
- write on the current square, and
- move left or right.

Definition

- Turing machine M is sixtuple (K, $\Sigma, \Gamma, \delta, s, H$):
- K is a finite set of states;
- Σ is the input alphabet, which does not contain \square;
- \square represents "blank"
- $\Gamma \supseteq \Sigma \cup\{\square\}$ is the tape alphabet.
- $s \in K$ is the initial state;
- $\mathrm{H} \subseteq \mathrm{K}$ is the set of halting states;
- δ is ...

Definition (cont)

- δ is the transition function:

$(\mathrm{K}-\mathrm{H})$	$\times \Gamma$ to $\mathrm{K} \times \Gamma \times\{\rightarrow, \leftarrow\}$		
non-halting	\times tape	state \times tape \times	\times action
state	char	char	$(R$ or $L)$

- At each step, look at what is on tape and based on current state, move to new state, write replacement on tape, and move left or right.

Notes on Definition

- The input tape is infinite in both directions.
- δ is a function, so defining deterministic TMs.
- δ must be defined for all state, input pairs unless the state is a halting state.
- TMs do not necessarily halt.
- Turing machines generate output so can compute functions.
- Takes contents of tape at start to contents at end.

Example

- Input to M is a string in $\left\{a^{i b j}, \mathrm{o} \leq \mathrm{j} \leq \mathrm{i}\right\}$,
- Goal: adds b's to make \# b's = \# a's.
- Input to M looks like:

- Output should be:

Questions:

- How is my laptop more like a Finite State Machine than like a Turing Machine?
- How is my laptop more like a Turing Machine than like a Finite State Machine?

TM Program

$K=\{\mathrm{I}, 2,3,4,5,6\}, \Sigma=\{\mathrm{a}, \mathrm{b}\}, \Gamma=\{\mathrm{a}, \mathrm{b}, \square, \$, \#\}$, $s=\mathrm{I}, \quad H=\{6\}, \delta=$

