Lecture $\frac{13: \text { Parsing in Haskell }}{$ CSCI ioi Spring, 2OI9 Kim Bruce }

Midterm

- 24 hour exam
- Open book
- Need to study!!
- Similar to homework
- Can take in any 24 hour period between Monday @ 8:30 a.m. and Wednesday at 5 p.m.

Rewrite Grammar

```
    <exp> ::= <term> <termTail>
    <termTail> ::= <addop> <term> <termTail>
            | \varepsilon
        <term> ::= <factor> <factorTail>
<factorTail> ::= <mulop> <factor> <factorTail>
            |
    <factor> ::= ( <exp> ) (7)
        | NUM
        | ID
    <addop> ::= + | -
    <mulop> ::= * /
No left recursion
How do we know which production to take?
```(2)(3)(7)(8)10)

\section*{First for Arithmetic}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{FIRST(<addop>) \(=\{+,-\}\)} \\
\hline FIRST(<mulop>) \(=\{*, /\}\) & \\
\hline FIRST(<factor>) \(=\{(\), NUM, ID \(\}\) & rules 7, 8, 9 \\
\hline FIRST \((<\) term \(>)=\{(\), NUM, ID \(\}\) & rules 4, 4, 4 \\
\hline FIRST \((<\exp >)=\{(\), NUM, ID \(\}\) & rules I, I, I \\
\hline FIRST(<termTail>) \(=\{+,-, \varepsilon\}\) & rules 2, 2,3 \\
\hline \(\operatorname{FIRST}(<\) factorTail>) \(=\{*, /, \varepsilon\}\) & rules 5, 5, 6 \\
\hline \multicolumn{2}{|l|}{Technically, should write down production giving the terminal - leave out here for clarity.} \\
\hline
\end{tabular}

Follow for Arithmetic
Only needed to
calculate for
\(\operatorname{FOLLOW}(<\exp >)=\{\mathrm{EOF}),\} \quad<\) termTail>,,
FOLLOW \((<\) termTail \(>)=\) FOLLOW \((<\exp >)=\{\) EOF, \()\}\)
FOLLOW \((<\) term \(>)=\operatorname{FIRST}(<\) termTail \(>) \cup\)
FOLLOW (<exp>) \(\cup\) FOLLOW(<termTail>)
\[
=\{+,-, \mathrm{EOF},)\}
\]

FOLLOW (<factorTail>) \(=\{+,-\), EOF,\()\}\)
FOLLOW \((<\) factor \(\rangle)=\{*, /,+,-\), EOF \(\}\)
FOLLOW \((<\) addop \(>)=\{(, N U M, I D\}\)
FOLLOW \((<\) mulop \(>)=\{(, N U M, I D\}\}\)

\section*{Building Table}
- Put \(\mathrm{X}::=\alpha\) in entry (\(\mathrm{X}, \mathrm{a}\)) if either
- a in First \((\alpha)\), or
- e in First \((\alpha)\) and a in Follow(X)
- Consequence: \(X\) ::= \(\alpha\) in entry (\(X, a\)) iff there is a derivation s.t. applying production can eventually lead to string starting with a.

\section*{Predictive Parsing, redux}
\[
\begin{aligned}
& \text { Goal: } a_{1} a_{2} \ldots a_{n} \\
& S \rightarrow \alpha \\
& \quad \ldots \\
& \quad \rightarrow a_{1} a_{2} X \beta
\end{aligned}
\]

Want next terminal character derived to be \(a_{3}\)

Need to apply a production \(X::=\gamma\) where
I) \(\gamma\) can eventually derive a string starting with \(\mathrm{a}_{3}\) or
2) If \(X\) can derive the empty string, then see
if \(\beta\) can derive a string starting with \(\mathrm{a}_{3}\).
- No table entry should have more than one production to ensure it's unambiguous, as otherwise we don't know which rule to apply.
- Laws of predictive parsing:
- If \(\mathrm{A}::=\alpha_{\mathrm{I}}|\ldots| \alpha_{\mathrm{n}}\) then for all \(\mathrm{i} \neq \mathrm{j}\), First \(\left(\alpha_{i}\right) \cap\) First \(\left(\alpha_{j}\right)=\varnothing\).
- If \(X \rightarrow^{*} \varepsilon\), then \(\operatorname{First}(X) \cap \operatorname{Follow}(X)=\varnothing\).
- Laws of predictive parsing:
- If \(\mathrm{A}:=\alpha_{\mathrm{I}}|\ldots ..| \alpha_{\mathrm{n}}\) then for all \(\mathrm{i} \neq \mathrm{j}\), First \(\left(\alpha_{i}\right) \cap \operatorname{First}\left(\alpha_{j}\right)=\varnothing\).
- If \(\mathrm{X} \rightarrow^{*} \varepsilon\), then First \((\mathrm{X}) \cap\) Follow \((\mathrm{X})=\varnothing\).
- 2nd is OK for arithmetic:
- FIRST(<termTail>) \(=\{+,-, \varepsilon\}\)
- FOLLOW(<termTail>) \(=\{\) EOF, \()\}\)
\(-\operatorname{FIRST}(<\) factorTail \(>)=\{*, /, \varepsilon\}\)
- FOLLOW (<factorTail \(>\)) \(=\{+,-\), EOF, \()\}\)

\section*{Writing a Parser}
- Use table to drive parser:
- Emulate pda: StackParseArith.hs
- Recursive descent: ParseArith.hs
- Build Abstract Syntax Tree!

See ArithParse.bs
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Non- \\
terminals
\end{tabular} & ID & NUM & Addop & Mulop & (&) & EOF \\
\hline <exp> & I & I & & & I & & \\
\hline <termTail> & & & 2 & & & 3 & 3 \\
\hline <term> & 4 & 4 & & & 4 & & \\
\hline <factTail & & & 6 & 5 & & 6 & 6 \\
\hline <factor> & 9 & 8 & & & 7 & & \\
\hline <addop> & & & IO & & & & \\
\hline <mulop> & & & & II & & & \\
\hline
\end{tabular}

Read off from table which production to apply!

\section*{More Options}
- Parser Combinators
- Domain specific language for parsing.
- Even easier to tie to grammar than recursive descent
- Build into Haskell and Scala, definable elsewhere
- Talk about when cover Scala

\section*{Parser Combinators in Scala}

\section*{Syntax tree building code}
```

def multOp = ("*" | "/")
def addOp = ("+" | "-")
def factor = "(" -> expr <- ")"| numericLit ^^ {...}
def term = factor }~(\mathrm{ (factorTail*)^^{...}}
def factorTail = multOp - factor ^^{...}
def expr = term ~ (termTail*) ^^ {...}
def termTail = addOp - term ^^{...}

```

\section*{Formal Syntax}
- Syntax:
- Readable, writable, easy to translate, unambiguous, ...
- Formal Grammars:
- Backus \& Naur, Chomsky
- First used in ALGOL 6o Report - formal description
- Generative description of language.
- Language is set of strings. (E.g. all legal C++ programs)

\section*{Where are we?}

\section*{Example}
```

<exp> | <term> | <exp> <addop> <term>
<term> | <factor> | <term> <multop> <factor>
<factor> => <id> | <literal> | (<exp>)
<id> }\quad=>\quad\mathrm{ a | b | c | d
<literal> = <digit> | <digit> <literal>
<digit> }\quad=>\quad0||||\mp@code{1 | | | 9
<addop> }\quad=>+| - | or
<multop> = * | / | div | mod | and

```

\section*{Extended BNF}
- Extended BNF handy:
- item enclosed in square brackets is optional
- <conditional> \(\Rightarrow\) if <expression> then <statement>
[else <statement>]
- item enclosed in curly brackets means zero or more occurrences
- <literal> \(\Rightarrow\) <digit \(>\{<\) digit \(>\}\)

\section*{Ambiguity}
```

<statement> = <unconditional> | <conditional>
<unconditional> => <assignment> | <for loop> |
"{" { <statement> } "}"
<conditional> => if (<expression>) <statement>
if (<expression>) <statement>
else <statement>

```

How do you parse:

> if (exp1)
if (exp2)
stat1;
else
stat2;

\section*{Syntax Diagrams}
- Syntax diagrams - alternative to BNF.
- Syntax diagrams are never directly recursive, use "loops" instead.

\section*{Resolving Ambiguity}
- Pascal, C, C++, and Java rule:
- else attached to nearest then.
- to get other form, use \(\{. .\).
- Modula-2 and Algol 68
- No "‘", only """ (except write as "end")
- Not a problem in LISP/Racket/ML/Haskell conditional expressions
- Ambiguity in general is undecidable

\section*{Chomsky Hierarchy}
- Chomsky developed mathematical theory of programming languages:
- type o: recursively enumerable
- type r: context-sensitive
- type 2: context-free
- type 3: regular
- BNF = context-free, recognized by pda

\section*{Beyond Context-Free}
- Not all aspects of PL's are context-free
- Declare before use, goto target exist
- Formal description of syntax allows:
- programmer to generate syntactically correct programs
- parser to recognize syntactically correct programs
- Parser-generators: LEX, YACC, ANTLR, etc.
- formal spec of syntax allows automatic creation of recognizers

\section*{Beyond PDA's}
- Grammars and machine models rich enough to represent every effective algorithm
- FSM's have no extra storage space
- PDA's can use unbounded push-down stack
- Expand to unrestricted (but finite) storage

\section*{Models}
- Many possible:
- RAM: FSM with potentially infinite memory directly addressable.
- Turing Machine: FSM with potentially infinite (both directions) tape for storage.
- TM historically most important, but RAM more natural today.
- Many other models possible -- but all equivalent!!
- While language, lambda calculus, ...

\section*{Turing Machines}

- At each step, the machine must:
- choose its next state,
- write on the current square, and
- move left or right.

\section*{What is good model?}
- Powerful enough to describe all computations
- Simple enough that we can reason formally about it

\section*{Definition}
- Turing machine M is sixtuple (\(\mathrm{K}, \Sigma, \Gamma, \delta, \mathrm{s}, \mathrm{H}\)):
- K is a finite set of states;
- \(\Sigma\) is the input alphabet, which does not contain \(\square\);
- \(\square\) represents "blank"
- \(\Gamma \supseteq \Sigma \cup\{\square\}\) is the tape alphabet.
- \(s \in K\) is the initial state;
- \(\mathrm{H} \subseteq \mathrm{K}\) is the set of halting states;
- \(\delta\) is ...```

