Lecture 13: Parsing in Haskell

CSCI 101 Spring, 2019

Kim Bruce

Midterm

- 24 hour exam
- Open book
 - Need to study!!
 - Similar to homework
- Can take in any 24 hour period between Monday @ 8:30 a.m. and Wednesday at 5 p.m.

Rewrite Grammar

<exp></exp>	::=	<term> <termtail></termtail></term>	(1)				
<termtail></termtail>	::=	<addop> <term> <termtail></termtail></term></addop>	(2)				
		3	(3)				
<term></term>	::=	<factor> <factortail></factortail></factor>	(4)				
<factortail></factortail>	::=	<mulop> <factor> <factortail></factortail></factor></mulop>	(5)				
		3	(6)				
<factor></factor>	::=	(<exp>)</exp>	(7)				
		NUM	(8)				
		ID	(9)				
<addop></addop>	::=	+ _	(10)				
<mulop></mulop>	::=	* /	(11)				
No left recursion							
How	v do z	ve know which production to take?					

First for Arithmetic

FIRST(<addop>) = { +, - }</addop>	
FIRST(<mulop>) = { *, / }</mulop>	
FIRST(<factor>) = { (, NUM, ID }</factor>	rules 7, 8, 9
FIRST(<term>) = { (, NUM, ID }</term>	rules 4, 4, 4
FIRST(<exp>) = { (, NUM, ID }</exp>	rules 1, 1, 1
$FIRST() = \{+, -, \epsilon\}$	rules 2, 2, 3
FIRST(<factortail>) = { *, /, ε }</factortail>	rules 5, 5, 6

Technically, should write down production giving the terminal — leave out here for clarity.

Predictive Parsing, redux

Goal: $a_1a_2...a_n$

 $S \rightarrow \alpha$... $\rightarrow a_{I}a_{2}X\beta$

Want next terminal character derived to be a3

Need to apply a production X ::= γ where
1) γ can eventually derive a string starting with a₃ or
2) If X can derive the empty string, then see if β can derive a string starting with a₃.

Building Table

- Put X ::= α in entry (X,a) if either
 - a in First(α), or
 - e in $First(\alpha)$ and a in Follow(X)
- Consequence: X ::= α in entry (X,a) iff there is a derivation s.t. applying production can eventually lead to string starting with a.

Need Unambiguous

- No table entry should have more than one production to ensure it's unambiguous, as otherwise we don't know which rule to apply.
- Laws of predictive parsing:
 - If A ::= $\alpha_i \mid ... \mid \alpha_n$ then for all $i \neq j$, First $(\alpha_i) \cap$ First $(\alpha_j) = \emptyset$.
 - If X →* ε, then $First(X) \cap Follow(X) = \emptyset$.

- FOLLOW(<factorTail>) = { +, -, EOF,) }

Non- terminals	ID	NUM	Addop	Mulop	()	EOF
<exp></exp>	Ι	I			Ι		
<termtail></termtail>			2			3	3
<term></term>	4	4			4		
<facttail></facttail>			6	5		6	6
<factor></factor>	9	8			7		
<addop></addop>			IO				
<mulop></mulop>				II			

Read off from table which production to apply!

More Options

• Parser Combinators

- Domain specific language for parsing.
- Even easier to tie to grammar than recursive descent
- Build into Haskell and Scala, definable elsewhere
 - Talk about when cover Scala

Where are we?

Formal Syntax

- Syntax:
 - Readable, writable, easy to translate, unambiguous, ...
- Formal Grammars:
 - Backus & Naur, Chomsky
 - First used in ALGOL 60 Report formal description
 - Generative description of language.
- Language is set of strings. (E.g. all legal C++ programs)

Example

$\langle exp \rangle \Rightarrow$	<term> <exp> <addop> <term></term></addop></exp></term>
<term> ⇒</term>	<factor> <term> <multop> <factor></factor></multop></term></factor>
$< factor > \Rightarrow$	<id> <literal> (<exp>)</exp></literal></id>
<id>> ⇒</id>	a b c d
$<$ literal> \Rightarrow	<digit> <digit> <literal></literal></digit></digit>
<digit> ⇒</digit>	0 1 2 9
$< addop > \Rightarrow$	+ - or
<multop> \Rightarrow</multop>	* / div mod and

Extended BNF

- Extended BNF handy:
 - item enclosed in square brackets is optional
 - <conditional> ⇒ if <expression> then <statement> [else <statement>]
 - item enclosed in curly brackets means zero or more occurrences
 - <literal> \Rightarrow <digit> { <digit> }

Syntax Diagrams

- Syntax diagrams alternative to BNF.
 - Syntax diagrams are never directly recursive, use "loops" instead.

Resolving Ambiguity

- Pascal, C, C++, and Java rule:
 - else attached to nearest then.
 - to get other form, use { ... }
- Modula-2 and Algol 68
 - No "{", only "}" (except write as "end")
- Not a problem in LISP/Racket/ML/Haskell conditional *expressions*
- Ambiguity in general is undecidable

Chomsky Hierarchy

- Chomsky developed mathematical theory of programming languages:
 - type 0: recursively enumerable
 - type 1: context-sensitive
 - type 2: context-free
 - type 3: regular
- BNF = context-free, recognized by pda

Beyond Context-Free

- Not all aspects of PL's are context-free
 - Declare before use, goto target exist
- Formal description of syntax allows:
 - programmer to generate syntactically correct programs
 - parser to recognize syntactically correct programs
- Parser-generators: LEX, YACC, ANTLR, etc.
 - formal spec of syntax allows automatic creation of recognizers

Turing Machines

Beyond PDA's

- Grammars and machine models rich enough to represent every effective algorithm
- FSM's have no extra storage space
- PDA's can use unbounded push-down stack
- Expand to unrestricted (but finite) storage

Models

- Many possible:
 - RAM: FSM with potentially infinite memory directly addressable.
 - Turing Machine: FSM with potentially infinite (both directions) tape for storage.
 - TM historically most important, but RAM more natural today.
 - Many other models possible -- but all equivalent!!
 - While language, lambda calculus, ...

What is good model?

- Powerful enough to describe all computations
- Simple enough that we can reason formally about it

Definition

- Turing machine M is sixtuple (K, Σ, Γ, δ, s, H):
 - K is a finite set of states;
 - Σ is the input alphabet, which does not contain \Box ;
 - 🗆 represents "blank"
 - $\Gamma \supseteq \Sigma \cup \{\Box\}$ is the tape alphabet.
 - $s \in K$ is the initial state;
 - $H \subseteq K$ is the set of halting states;
 - δ is ...