Midterm

* 24 hour exam

Lecture 13: Parsing in Haskell

e Open book
CSCI 101 * Need to study!!
Spring, 2019 e Similar to homework
Kim Bruce * Can take in any 24 hour period between

Monday @ 8:30 a.m. and Wednesday at 5 p.m.

Rewrite Grammar First for Arithmetic
<exp> ::= <term> <termTail> (1)
<termTail> ::= <addop> <term> <termTail> (2)
| € (3) FIRST(<addop>) = { +, -}
<term> ::= <factor> <factorTail> (4) .
<factorTail> ::= <mulop> <factor> <factorTail> (5) FIRST(<mulop>) =%/}
| € (6) FIRST(<factor>) = { NUM, ID } rules7,8,9
<factor> ::= (<exp>) (7) FIRST(<term>) = { , NUM, ID } rules 4,4, 4
: oM (8) FIRST(<exp>) = { , NUM, ID } rules 1, 1,
ID (9) . _
<addop> ::= + | - (10) FIRST(<termTail>) ={+,-, €} rulesz, 2,3
<mulop> ::= * | / (11) FIRST(«factorTail>) ={ *,/, €} ruless, 5, 6
No lf{ﬂ' recursion Technically, should write down production giving

How do we know which production to take? the terminal — leave out bere for clarity.

nly needed to
calculate for

Follow for Arithmetic,
<termTail>,

FOLLOW (<exp>) ={EOF,) } <factorTuil> !

FOLLOW (<termTail>) = F Wi(<exp>) ={ EOF,) }

FOLLOW/(<term>) = FIRST(<termTail>) U
FOLLOW (<exp>) U FOLLOW (<termTail>)
={+ -, EOF,)}

FOLLOW (<factorTail>) ={ +, -, EOF,) }
FOLLOW (<factor>) = {*/, +, -, EOF }
} Not needed!

FOLLOW (<addop>) = { (NUM, ID }
FOLLOW (<mulop>) = { NUM, ID }

Predictive Parsing, redux
Goal: aa,...an
S
— a2, Xp

Want next terminal character derived to be a,

Need to apply a production X ::= y where
1) Y can eventually derive a string starting with a; or
2) If X can derive the empty string, then see
if B can derive a string starting with a;.

Building Table

* Put X ::= o in entry (X,a) if either
- ain First(a), or
- e in First(o) and a in Follow(X)
* Consequence: X ::= a in entry (X,a) iff there is

a derivation s.t. applying production can
eventually lead to string starting with a.

Need Unambiguous

 No table entry should have more than one production
to ensure it’s unambiguous, as otherwise we
don’t know which rule to apply.

e Laws of predictive parsing:

- If A= oyl ..l 0, then for all i#j,
First(aw) N First(ay = .

- If X =* ¢, then First(X) N Follow(X) = .

e Laws of predictive parsing:

- IfAu=aql..l an then for all i#j,
First(a) N First(oy) = &.

- If X —* g, then First(X) N Follow(X) = &.

¢ >nd is OK for arithmetic:

- FIRST(<termTail>) = {+, -, €}

- FIRST(<factorTail>) = {*, /, & }

- FOLLOW(<termTail>) = { EOF,) } } >’0 overldp.’

- FOLLOW (<factorTail>) ={ +, -, EOF,) }

See ArithParse.bs

Non-
terminals

ID | NUM | Addop | Mulop| () | EOF

<exp> I I I

<termTuil> 2 3 3

<term> 4 4 4

<fact Tuil> 6 5 6 6

<factor> 9 8 7

<addop> 10

<mulop> II

Read off from table which production to apply!

Writing a Parser

e Use table to drive parser:
e Emulate pda: StackParseArith.hs

e Recursive descent: ParseArith.hs

o Build Abstract Syntax Tree!

More Options

e Parser Combinators
- Domain specific language for parsing.
- Even easier to tie to grammar than recursive descent

- Build into Haskell and Scala, definable elsewhere

e Talk about when cover Scala

Parser Combinators in Scala
Syntax tree building code

def multOp = (™" | "/") itted
def addOp = ("+" ["-")
def factor = "(" -> expr <- ")" | nume¢ricLit **{.}
def term = factor - (factorTail®) ** {1}

def factorTail = multOp - factor “...}

def expr = term - (termTail*) ** {...}

def termTail = addOp - term **{...}

Where are we?

Formal Syntax

* Syntax:
- Readable, writable, easy to translate, unambiguous, ...
* Formal Grammars:
- Backus & Naur, Chomsky
- First used in ALGOL 60 Report - formal description
- Generative description of language.

* Language is set of strings. (E.g. all legal C++

programs)

<exp>
<term>
<factor>
<id>
<literal>
<digit>
<addop>

<multop>

=

=

=

Example

<term> | <exp> <addop> <term>
<factor> | <term> <multop> <factor>
<id> | <literal> | (<exp>)
a|lb|c]|d

<digit> | <digit> <literal>

01 1] 2] -ua |9
+ | - | or
* | /| div | mod | and

Extended BNF

e Extended BNF handy:

- item enclosed in square brackets is optional

 <conditional> = if <expression> then <statement>
[else <statement> 1

- item enclosed in curly brackets means zero or more
occurrences

e <literal> = <digit> { <digit> }

Syntax Diagrams

e Syntax diagrams - alternative to BNF.

- Syntax diagrams are never directly recursive, use
"loops" instead.

s (D)~} =) |

A @
D &}

Ambiguity

<statement> = <unconditional> | <conditional>

<unconditional> = <assignment> | <for loop> |

"{" { <statement> } "}"

<conditional> = if (<expression>) <statement> |

if (<expression>) <statement>
else <statement>

How do you parse:

if (expl)
if (exp2)
statl;
else
stat2;

Resolving Ambiguity

e Pascal, C, C++, and Java rule:

- else attached to nearest then.

- to get other form, use { ... }

e Modula-2 and Algol 68

- No “{“, only “}” (except write as “end”)

* Not a problem in LISP/Racket/ML/Haskell
conditional expressions

* Ambiguity in general is undecidable

Chomsky Hierarchy

e Chomsky developed mathematical theory of
programming languages:
- type o: recursively enumerable
- type I: context-sensitive

- type 2: context-free
- type 3: regular

* BNF = context-free, recognized by pda

Beyond Context-Free

* Not all aspects of PLs are context-free

- Declare before use, goto target exist

e Formal description of syntax allows:

- programmer to generate syntactically correct
programs

- parser to recognize syntactically correct programs

* Parser-generators: LEX, YACC, ANTLR, etc.

- formal spec of syntax allows automatic creation of
recognizers

Turing Machines

Beyond PDA’s

* Grammars and machine models rich enough to
represent every effective algorithm

e FSM’s have no extra storage space
* PDA’s can use unbounded push-down stack

e Expand to unrestricted (but finite) storage

Models

e Many possible:

e RAM: FSM with potentially infinite memory directly
addressable.

* Turing Machine: FSM with potentially infinite (both
directions) tape for storage.

o TM historically most important, but RAM more natural
today:.

e Many other models possible - but all equivalent!!

e While language, lambda calculus, ...

What is good model?

* Powerful enough to describe all computations

e Simple enough that we can reason formally
about it

Turing Machines

Jofofafefefe]o]o]oafo]

T

Finite State Controller
S, q1s Gas - By, hy

e At each step, the machine must:
e choose its next state,
e write on the current square, and

* move left or right.

Definition

* Turing machine M is sixtuple (K, =, T, 9, s, H):
e K is a finite set of states;

e 2 is the input alphabet, which does not contain [J;

e O represents “blank”
e T DX U {0} is the tape alphabet.
e s € K is the initial state;
e H C K is the set of halting states;

e Jis ...

