Lecture 13: Parsing in Haskell

CSCI ioı
Spring, 2019
Kim Bruce

Lexing

- Lexer returns a list of all tokens from the input stream.
- Build from either regular expressions or (equivalently) finite automaton recognizing the tokens.
- See program LexArith.hs in class examples.
- Haskell program uses modules to hide info

Step i: Lexical Analysis

Explaining LexArith

- module LexArith(...) where
- lists funcs and types exported (includes constructors)
- code details follow in file
- getid :: [Char] -> [Char] -> ([Char], [Char])
- takes string and prefix of id to first full id and rest of string to be processed
- getnum :: [Char] -> Int -> (Int, [Char])
- similar
- getToken: [Char] \rightarrow (Token, [Char])
- takes string to pair of first recognized token and rest of list to be processed

Predictive Parsing

- Want to be able to parse languages without backtracking (even done efficiently).
- Talked earlier about deterministic pda's.
- No choice as to what to do at each step.
- Some languages seem deterministic, but don't quite work with that definition.
- Book uses $L=a^{*} \cup\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- Empty stack when at end if no b's.

Parsing

- Build parse tree from an expression
- Interested in abstract syntax tree
- drops irrelevant details from parse tree

Arithmetic grammar

```
    <exp> : := <exp> <addop> <term>
            | <term>
<term> ::= <term> <mulop> <factor>
            | <factor>
<factor> ::= ( <exp> )
            NUM
            ID
<addop> ::= + | -
<mulop> ::= * | /
```

Look at parse tree \&o abstract syntax tree for $2 * 3+7$

Recursive Descent Parser

Base recognizer (ignore building tree now) on productions: <exp> : : = <exp> <addop> <term>
addop (fst:rest) $=$ if fst=='+' or fst=='-' then rest
else error ...
exp input = let

inputAfterAddop = addop inputAfterExp
rest $=$ term inputAfterAddop
in
rest
or
fun exp input $=$ term(addOp(exp input));

Problems

- How do we select which production to use when alternatives?
- Left-recursive - never terminates

Rewrite Grammar

```
            <exp> ::= <term> <termTail>
    <termTail> ::= <addop> <term> <termTail>
            | \varepsilon
            <term> ::= <factor> <factorTail>
```

```
<factorTail> ::= <mulop> <factor> <factorTail>
```

<factorTail> ::= <mulop> <factor> <factorTail>
| \varepsilon
<factor> ::= (<exp>) (7)
| NUM
| ID
<addop> ::= + | -
No left recursion

```(2)(3)
        (9)

How do we know which production to take?

\section*{Predictive Parsing}

Goal: \(\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}}\)
\(\mathrm{S} \rightarrow \alpha\)
\[
\rightarrow \mathrm{a}_{\mathrm{i}} \mathrm{a}_{2} \mathrm{X} \beta
\]

Want next terminal character derived to be \(\mathrm{a}_{3}\)
Need to apply a production \(\mathrm{X}:=\gamma\) where
I) \(\gamma\) can eventually derive a string starting with \(a_{3}\) or
2) If \(X\) can derive the empty string, and also
if \(\beta\) can derive a string starting with \(a_{3}\).
\(a_{3}\) in Follow \((X)\)

\section*{FIRST}
- Intuition \(: \mathrm{b} \in \operatorname{First}(\mathrm{X})\) iff there is a derivation \(X \rightarrow *\) b \(\omega\) for some \(\omega\).
I. First \((\mathrm{b})=\mathrm{b}\) for b a terminal or the empty string
2.If have \(X::=\omega_{1}\left|\omega_{2}\right| \ldots \mid \omega_{\mathrm{n}}\) then

First \((X)=\operatorname{First}\left(\omega_{\mathrm{r}}\right) \cup \ldots \cup \operatorname{First}\left(\omega_{\mathrm{n}}\right)\)
3.For any right hand side \(u_{1} u_{2} \ldots u_{n}\)
- First \(\left(\mathbf{u}_{\mathrm{I}}\right) \subseteq\) First \(\left(\mathbf{u}_{\mathrm{I}} \mathbf{u}_{2} \ldots \mathrm{u}_{\mathrm{n}}\right)\)
- if all of \(u_{1}, u_{2} \ldots, u_{i-1}\) can derive the empty string then also First \(\left(\mathrm{u}_{\mathrm{i}}\right) \subseteq\) First \(\left(\mathrm{u}_{\mathrm{r}} \mathrm{u}_{2} \ldots \mathrm{u}_{\mathrm{n}}\right)\)
- empty string is in First \(\left(u_{1} u_{2} \ldots u_{n}\right)\) iff all of \(u_{1}, u_{2} \ldots, u_{n}\) can derive the empty string

\section*{First for Arithmetic}
```

FIRST(<addop>) = {+, - }
FIRST(<mulop>) = {*,/}
FIRST(<factor>) = {(, NUM, ID }
FIRST(<term>) ={(, NUM, ID }
FIRST(<exp>) = {(, NUM, ID }
FIRST(<termTail>) ={+, -, \varepsilon}
FIRST(<factorTail>) ={*,/, \varepsilon}
Technically, should write down production giving
the terminal - leave out here for clarity.

```

\section*{Follow}
- Intuition: A terminal \(b \in\) Follow( X ) iff there is a derivation \(\mathrm{S} \rightarrow{ }^{*} \mathrm{vXb} \omega\) for some v and \(\omega\).
\(I\).If S is the start symbol then put \(\mathrm{EOF} \in\) Follow(S)
2. For all rules of the form \(\mathrm{A}::=\mathrm{wXv}\),
a.Add all elements of First(v) to Follow(X)
b.If v can derive the empty string then add all elts of Follow(A) to Follow(X)
- Follow(X) only used if can derive empty string from X.

\section*{Follow for Arithmetic}
\(\operatorname{FOLLOW}(<\exp >) \leftrightarrows\{\mathrm{EOF})\),\(\} \quad \begin{tabular}{l}
\) calculate for \\
\\
\(<\) termTail, \\
\(<\) factorTail>!
\end{tabular}

FOLLOW (<termTail>) \(=\) FOLLOW (<exp>) \(=\{\) EOF, \()\}\)
FOLLOW \((<\) term \(>)=\operatorname{FIRST}(<\) termTail \(>) \cup\)
FOLLOW(<exp>) \(\cup\) FOLLOW(<termTail>)
\(=\{+,-, \mathrm{EOF})\),
FOLLOW(<factorTail>) \(=\{+,-\), EOF,\()\}\)
FOLLOW \((<\) factor \(>)=\left\{{ }^{*}, /,+,-, E O F\right\}\)
FOLLOW \((<a d d o p\rangle)=\{(, N U M, I D\}\)
FOLLOW \((<\) mulop \(>)=\{(, N U M, I D\}\)

\section*{Predictive Parsing, redux}
\[
\begin{aligned}
& \text { Goal: } a_{1} a_{2} \ldots a_{n} \\
& S \rightarrow \alpha \\
& \quad \ldots \\
& \quad \rightarrow a_{1} a_{2} X \beta
\end{aligned}
\]

Want next terminal character derived to be \(\mathrm{a}_{3}\)
Need to apply a production \(\mathrm{X}::=\gamma\) where
I) \(\gamma\) can eventually derive a string starting with \(\mathrm{a}_{3}\) or
2) If \(X\) can derive the empty string, then see if \(\beta\) can derive a string starting with \(\mathrm{a}_{3}\).

\section*{Building Table}
- Put \(\mathrm{X}::=\alpha\) in entry ( \(\mathrm{X}, \mathrm{a}\) ) if either
- a in First \((\alpha)\), or
- e in First( \(\alpha\) ) and a in Follow(X)
- Consequence: \(\mathrm{X}::=\alpha\) in entry ( \(\mathrm{X}, \mathrm{a}\) ) iff there is a derivation s.t. applying production can eventually lead to string starting with a.

\section*{Need Unambiguous}
- No table entry should have more than one production to ensure it's unambiguous, as otherwise we don't know which rule to apply.
- Laws of predictive parsing:
- If \(A::=\alpha_{1}|\ldots| \alpha_{\mathrm{n}}\) then for all \(\mathrm{i} \neq \mathrm{j}\), First \(\left(\alpha_{i}\right) \cap \operatorname{First}\left(\alpha_{i}\right)=\varnothing\).
- If \(\mathrm{X} \rightarrow^{*} \varepsilon\), then \(\operatorname{First}(\mathrm{X}) \cap \operatorname{Follow}(\mathrm{X})=\varnothing\).
- Laws of predictive parsing:
- If \(\mathrm{A}::=\alpha_{\mathrm{I}}|\ldots| \alpha_{\mathrm{n}}\) then for all \(\mathrm{i} \neq \mathrm{j}\), First \(\left(\alpha_{i}\right) \cap\) First \(\left(\alpha_{j}\right)=\varnothing\).
- If \(\mathrm{X} \rightarrow{ }^{*} \varepsilon\), then \(\operatorname{First}(\mathrm{X}) \cap \operatorname{Follow}(\mathrm{X})=\varnothing\).
- 2nd is OK for arithmetic:
- FIRST(<termTail>) \(=\{+,-, \varepsilon\}\)
- FOLLOW(<termTail>) \(=\{\) EOF, \()\}\)
- FIRST(<factorTail) \(=\{*, I, \varepsilon\}\)
- FOLLOW(<factorTail>) \(=\{+,-\), EOF, \()\}\)


See ArithParse.bs
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Non- \\
terminals
\end{tabular} & ID & NUM & Addop & Mulop & ( & ) & EOF \\
\hline <exp> & I & I & & & I & & \\
\hline <termTail> & & & 2 & & & 3 & 3 \\
\hline <term> & 4 & 4 & & & 4 & & \\
\hline <factTail> & & & 6 & 5 & & 6 & 6 \\
\hline <factor> & 9 & 8 & & & 7 & & \\
\hline <addop> & & & IO & & & & \\
\hline <mulop \(>\) & & & & II & & & \\
\hline
\end{tabular}

Read off from table which production to apply!

\section*{More Options}
- Parser Combinators
- Domain specific language for parsing.
- Even easier to tie to grammar than recursive descent
- Build into Haskell and Scala, definable elsewhere
- Talk about when cover Scala

\section*{Parser Combinators in Scala}

Syntax tree building code
def multOp = ("*" | "/")
def addOp = ("+" | "-")
def factor \(=\) " (" \(\rightarrow\) expr <-" \() " \mid\) numericLit \({ }^{\wedge}\{\ldots\}\)
def term \(=\) factor \(\sim(\text { factorTail })^{*} \wedge\{. .\).
def factorTail \(=\) multOp \(\sim\) factor \({ }^{\wedge}\{. .\).
def \(\operatorname{expr}=\) term \(\sim(\text { termTail })^{\wedge}{ }^{\wedge}\{\ldots\}\)
def termTail \(=\) addOp \(-\operatorname{term}^{\wedge}{ }^{\wedge}\{. .\).```

