Lecture 13: Parsing in Haskell
CSCI 101 Spring, 2019
Kim Bruce

Step 1: Lexical Analysis

Lexing

- Lexer returns a list of all tokens from the input stream.
- Build from either regular expressions or (equivalently) finite automaton recognizing the tokens.
- See program LexArith.hs in class examples.
 - Haskell program uses modules to hide info

Explaining LexArith

- module LexArith(...) where
 - lists funcs and types exported (includes constructors)
- code details follow in file
 - getid :: [Char] -> [Char] -> ([Char], [Char])
 - takes string and prefix of id to first full id and rest of string to be processed
 - getnum :: [Char] -> Int -> (Int, [Char])
 - similar
 - getToken: [Char] → (Token, [Char])
 - takes string to pair of first recognized token and rest of list to be processed

Parsing

Parsing

- Build parse tree from an expression
- Interested in abstract syntax tree
 - drops irrelevant details from parse tree

Predictive Parsing

- Want to be able to parse languages without backtracking (even done efficiently).
- Talked earlier about deterministic pda's.
 - No choice as to what to do at each step.
- Some languages seem deterministic, but don't quite work with that definition.
 - Book uses L = $a^* \cup \{a^nb^n \mid n \ge 0\}$
 - Empty stack when at end if no b's.

Arithmetic grammar

Look at parse tree & abstract syntax tree for 2 * 3 + 7

Problems

- How do we select which production to use when alternatives?
- Left-recursive never terminates

Rewrite Grammar

<exp></exp>	::=	<term> <termtail></termtail></term>	(1)					
<termtail></termtail>	::=	<addop> <term> <termtail></termtail></term></addop>	(2)					
		ε	(3)					
<term></term>	::=	<factor> <factortail></factortail></factor>	(4)					
<factortail></factortail>	::=	<mulop> <factor> <factortail></factortail></factor></mulop>	(5)					
		3	(6)					
<factor></factor>	::=	(<exp>)</exp>	(7)					
		NUM	(8)					
		ID	(9)					
<addop></addop>	::=	+ _	(10)					
<mulop></mulop>	::=	* /	(11)					
No left recursion								
How do we know which production to take?								

FIRST

- Intuition: $b \in First(X)$ iff there is a derivation $X \rightarrow^* b\omega$ for some ω .
- I.First(b) = b for b a terminal or the empty string
- 2. If have X ::= $\omega_1 | \omega_2 | ... | \omega_n$ then First(X) = First(ω_1) $\cup ... \cup$ First(ω_n)
- 3. For any right hand side $u_1u_2...u_n$
 - $First(u_1) \subseteq First(u_1u_2...u_n)$
 - if all of $u_{1}, u_{2}..., u_{i^{-1}}$ can derive the empty string then also $First(u_{i})\subseteq First(u_{1}u_{2}...u_{n})$
 - empty string is in $First(u_{1}u_{2}...u_{n})$ iff all of $u_{1},\,u_{2}...,\,u_{n}$ can derive the empty string

First for Arithmetic

FIRST(<addop>) = { +, - } FIRST(<mulop>) = { *, / } FIRST(<factor>) = { (, NUM, ID } FIRST(<term>) = { (, NUM, ID } FIRST(<exp>) = { (, NUM, ID } FIRST(<termTail>) = { +, -, ε } FIRST(<factorTail>) = { *, /, ε }

Technically, should write down production giving the terminal — leave out here for clarity.

Follow

- *Intuition:* A terminal $b \in Follow(X)$ iff there is a derivation $S \rightarrow^* vXb\omega$ for some v and ω .
- *I*. If S is the start symbol then put $EOF \in Follow(S)$
- 2. For all rules of the form A ::= wXv,
 - *d*.Add all elements of First(v) to Follow(X)
 - **b.** If v can derive the empty string then add all elts of Follow(A) to Follow(X)
- Follow(X) only used if can derive empty string from X.

Predictive Parsing, redux

Goal: $a_1a_2...a_n$

 $S \rightarrow \alpha$

 $\rightarrow a_1 a_2 X \beta$

Want next terminal character derived to be a3

Need to apply a production X ::= γ where
1) γ can eventually derive a string starting with a₃ or
2) If X can derive the empty string, then see if β can derive a string starting with a₃.

Building Table

- Put X ::= α in entry (X,a) if either
 - a in First(α), or
 - e in $First(\alpha)$ and a in Follow(X)
- Consequence: X ::= α in entry (X,a) iff there is a derivation s.t. applying production can eventually lead to string starting with a.

Need Unambiguous

- No table entry should have more than one production to ensure it's unambiguous, as otherwise we don't know which rule to apply.
- Laws of predictive parsing:
 - If $A ::= \alpha_i \mid ... \mid \alpha_n$ then for all $i \neq j$, First $(\alpha_i) \cap$ First $(\alpha_j) = \emptyset$.
 - If $X \rightarrow^* \varepsilon$, then $First(X) \cap Follow(X) = \emptyset$.

- Laws of predictive parsing:
 - If $A ::= \alpha_i \mid ... \mid \alpha_n$ then for all $i \neq j$, First $(\alpha_i) \cap$ First $(\alpha_j) = \emptyset$.
 - If $X \rightarrow^* \epsilon$, then $First(X) \cap Follow(X) = \emptyset$.

no overlap!

- 2nd is OK for arithmetic:
 - FIRST(<termTail>) = { +, -, ε }
 - FOLLOW(<termTail>) = { EOF,) }
 - FIRST(<factorTail>) = { *, /, ε }
- FOLLOW(<factorTail>) = { +, -, EOF,) }

Non- terminals	ID	NUM	Addop	Mulop	()	EOF
<exp></exp>	Ι	I			Ι		
<termtail></termtail>			2			3	3
<term></term>	4	4			4		
<facttail></facttail>			6	5		6	6
<factor></factor>	9	8			7		
<addop></addop>			IO				
<mulop></mulop>				II			

Read off from table which production to apply!

More Options

- Parser Combinators
 - Domain specific language for parsing.
 - Even easier to tie to grammar than recursive descent
 - Build into Haskell and Scala, definable elsewhere
 - Talk about when cover Scala

