
Lecture 13: Parsing in Haskell
CSCI 101

Spring, 2019

Kim Bruce

Step 1: Lexical Analysis

Lexing

• Lexer returns a list of all tokens from the input stream.

• Build from either regular expressions or (equivalently)
finite automaton recognizing the tokens.

• See program LexArith.hs in class examples.

• Haskell program uses modules to hide info

Explaining LexArith
• module LexArith(...) where
- lists funcs and types exported (includes constructors)

• code details follow in file
- getid :: [Char] -> [Char] -> ([Char], [Char])

• takes string and prefix of id to first full id and rest of string to
be processed

- getnum :: [Char] -> Int -> (Int, [Char])

• similar

- getToken: [Char] → (Token, [Char])

• takes string to pair of first recognized token and rest of list to
be processed

Parsing

Parsing

• Build parse tree from an expression

• Interested in abstract syntax tree
- drops irrelevant details from parse tree

Predictive Parsing

• Want to be able to parse languages without
backtracking (even done efficiently).

• Talked earlier about deterministic pda’s.

• No choice as to what to do at each step.

• Some languages seem deterministic, but don’t
quite work with that definition.

• Book uses L = a* ∪ {anbn | n ≥ 0}

• Empty stack when at end if no b’s.

Arithmetic grammar
 <exp> ::= <exp> <addop> <term>
 | <term>
 <term> ::= <term> <mulop> <factor>
 | <factor>
 <factor> ::= (<exp>)
 | NUM
 | ID
 <addop> ::= + | -
 <mulop> ::= * | /

Look at parse tree & abstract syntax tree for 2 * 3 + 7

Recursive Descent Parser
Base recognizer (ignore building tree now) on productions:

<exp> ::= <exp> <addop> <term>

 addop (fst:rest) = if fst==’+’ or fst==’-‘ then rest
 else error ...

 exp input = let
 inputAfterExp = exp input
 inputAfterAddop = addOp inputAfterExp
 rest = term inputAfterAddop
 in
 rest

or
fun exp input = term(addOp(exp input));

Problems

• How do we select which production to use
when alternatives?

• Left-recursive - never terminates

Rewrite Grammar
 <exp> ::= <term> <termTail> (1)
 <termTail> ::= <addop> <term> <termTail> (2)
 | ε (3)
 <term> ::= <factor> <factorTail> (4)
 <factorTail> ::= <mulop> <factor> <factorTail> (5)
 | ε (6)
 <factor> ::= (<exp>) (7)
 | NUM (8)
 | ID (9)
 <addop> ::= + | - (10)
 <mulop> ::= * | / (11)

No left recursion
How do we know which production to take?

Predictive Parsing
Goal: a1a2...an

S → α
 ...
 → a1a2Xβ

Want next terminal character derived to be a3

Need to apply a production X ::= γ where
 1) γ can eventually derive a string starting with a3 or
 2) If X can derive the empty string, and also
 if β can derive a string starting with a3.

a3 in First(γ)

a3 in Follow(X)

FIRST
• Intuition: b ∈ First(X) iff there is a derivation  

 X →* bω for some ω.
1.First(b) = b for b a terminal or the empty string

2.If have X ::= ω1 | ω2 | ... | ωn then 
 First(X) = First(ω1) ∪ ... ∪ First(ωn)

3.For any right hand side u1u2...un

- First(u1) ⊆ First(u1u2...un)

- if all of u1, u2..., ui-1 can derive the empty string then
also First(ui) ⊆ First(u1u2...un)

- empty string is in First(u1u2...un) iff all of u1, u2..., un
can derive the empty string

First for Arithmetic

FIRST(<addop>) = { +, - }
FIRST(<mulop>) = { *, / }
FIRST(<factor>) = { (, NUM, ID }
FIRST(<term>) = { (, NUM, ID }
FIRST(<exp>) = { (, NUM, ID }
FIRST(<termTail>) = { +, -, ε }
FIRST(<factorTail>) = { *, /, ε }

Technically, should write down production giving
the terminal — leave out here for clarity.

Follow

• Intuition: A terminal b ∈ Follow(X) iff there is a
derivation S →* vXbω for some v and ω.

1.If S is the start symbol then put EOF ∈ Follow(S)
2.For all rules of the form A ::= wXv,

a.Add all elements of First(v) to Follow(X)

b.If v can derive the empty string then add all elts of
Follow(A) to Follow(X)

• Follow(X) only used if can derive empty string
from X.

Follow for Arithmetic

 FOLLOW(<exp>) = { EOF,) }
 FOLLOW(<termTail>) = FOLLOW(<exp>) = { EOF,) }
 FOLLOW(<term>) = FIRST(<termTail>) ∪
 FOLLOW(<exp>) ∪ FOLLOW(<termTail>)
 = { +, -, EOF,) }
FOLLOW(<factorTail>) = { +, -, EOF,) }
 FOLLOW(<factor>) = { *, /, +, -, EOF }
 FOLLOW(<addop>) = { (, NUM, ID } Not needed!
 FOLLOW(<mulop>) = { (, NUM, ID } }

Only needed to
calculate for
<termTail>,
<factorTail> !

Predictive Parsing, redux
Goal: a1a2...an

S → α
 ...
 → a1a2Xβ

Want next terminal character derived to be a3

Need to apply a production X ::= γ where
 1) γ can eventually derive a string starting with a3 or
 2) If X can derive the empty string, then see
 if β can derive a string starting with a3.

Building Table

• Put X ::= α in entry (X,a) if either
- a in First(α), or

- e in First(α) and a in Follow(X)

• Consequence: X ::= α in entry (X,a) iff there is
a derivation s.t. applying production can
eventually lead to string starting with a.

Need Unambiguous

• No table entry should have more than one production
to ensure it’s unambiguous, as otherwise we
don’t know which rule to apply.

• Laws of predictive parsing:
- If A ::= α1 | ...| αn then for all i̸≠ j,  

First(αi) ∩ First(αj) = ∅.

- If X →* ε, then First(X) ∩ Follow(X) = ∅.

• Laws of predictive parsing:
- If A ::= α1 | ...| αn then for all i̸≠ j,  

First(αi) ∩ First(αj) = ∅.

- If X →* ε, then First(X) ∩ Follow(X) = ∅.

• 2nd is OK for arithmetic:
- FIRST(<termTail>) = { +, -, ε }

- FOLLOW(<termTail>) = { EOF,) }

- FIRST(<factorTail>) = { *, /, ε }

- FOLLOW(<factorTail>) = { +, -, EOF,) }

}
}

no overlap!

Non-
terminals ID NUM Addop Mulop () EOF

<exp> 1 1 1
<termTail> 2 3 3

<term> 4 4 4
<factTail> 6 5 6 6
<factor> 9 8 7
<addop> 10
<mulop> 11

Read off from table which production to apply!

See ArithParse.hs More Options

• Parser Combinators
- Domain specific language for parsing.

- Even easier to tie to grammar than recursive descent

- Build into Haskell and Scala, definable elsewhere

• Talk about when cover Scala

Parser Combinators in Scala

def multOp = ("*" | "/")

def addOp = ("+" | "-")

def factor = "(" ~> expr <~ ")" | numericLit ^^ {...}

def term = factor ~ (factorTail*) ^^ {...}

def factorTail = multOp ~ factor ^^{...}

def expr = term ~ (termTail*) ^^ {...}

def termTail = addOp ~ term ^^{...}

Syntax tree building code
omitted

