Lecture 13: Parsing in Haskell

CSCI 101
Spring, 2019

Kim Bruce

Step 1: Lexical Analysis

Lexing

e Lexer returns a list of all tokens from the input stream.

o Build from either regular expressions or (equivalently)
finite automaton recognizing the tokens.

o See program LexArith.hs in class examples.

o Haskell program uses modules to hide info

Explaining LexArith
e module LexArith(...) where

- lists funcs and types exported (includes constructors)

* code details follow in file
- getid :: {Char} -> {Char} -> (Charl, {CharD

e takes string and prefix of id to first full id and rest of string to
be processed

- getnum :: {Charl -> Int -> (Int, {Char})
e similar
- getToken: [Char} — (Token, {Char})

o takes string to pair of first recognized token and rest of list to
be processed

Parsing

Parsing

* Build parse tree from an expression

e Interested in abstract syntax tree

- drops irrelevant details from parse tree

Predictive Parsing

e Want to be able to parse languages without
backtracking (even done efficiently).

« Talked earlier about deterministic pda’s.

* No choice as to what to do at each step.

* Some languages seem deterministic, but don’t
quite work with that definition.

e Book uses L =a* U {anb» | n > o}

* Empty stack when at end if no b’s.

Arithmetic grammar

<exp> ::= <exp> <addop> <term>
| <term>
<term> ::= <term> <mulop> <factor>
| <factor>
<factor> ::= (<exp>)
| NUM
| ID
<addop> ::= + | -
<mulop> ::= * | /

Look at parse tree & abstract syntax tree for 2 *3 + 7

Recursive Descent Parser

Base recognizer (ignore building tree now) on productions:
<exp> ::= <exp> <addop> <term>

addop (fst:rest) = if fst=='+' or fst=='-' then rest
else error ...

exp input = let

inputAfterExp
inputAfterAddop = addOp inputAfterExp

rest = term inputAfterAddop
in
rest
or

fun exp input = term(addOp(exp input));

Problems

* How do we select which production to use
when alternatives?

e Left-recursive - never terminates

Rewrite Grammar

<exp> ::= <term> <termTail>

<termTail> ::= <addop> <term> <termTail>
| €
<term> ::= <factor> <factorTail>
<factorTail> ::= <mulop> <factor> <factorTail>
| €
<factor> ::= (<exp>)

| NuM
| 1D

<addop> ::= + | -

<mulop> ::= * | /

No left recursion
How do we know which production to take?

(1)
(2)
(3)
(4)
(3)
(6)
(7)
(8)
(9)
(10)
(11)

Predictive Parsing

Goal: a;a,...a,
S—a

— a2, X

Want next terminal character derived to be a,
a; in First(y)
Need to apply a production X ::= Y where
1) ¥ can eventually derive a string starting with a; or
2) If X can derive the empty string, and also
if P can derive a string starting with a;.

a; in Follow(X)

FIRST

o Intustion: b € First(X) iff there is a derivation
X —=* bw for some w.

I.First(b) = b for b a terminal or the empty string

2. If have X ::= 0; | w, | ... | w, then
First(X) = First(w,) U ... U First(wy)
3.For any right hand side usu....us
- First(uy C First(uu,...uy)

- if all of uy, u,..., ui can derive the empty string then
also First(u) C First(u,u,...us)

- empty string is in First(uu,...us) iff all of uy, u,..., ua
can derive the empty string

First for Arithmetic

FIRST(<addop>) = { +, -}
FIRST(<mulop>) ={*, /}
FIRST(<factor>) = { NUM, ID }
FIRST(<term>) = { (NUM, ID }
FIRST(<exp>) ={ (NUM, ID }
FIRST(<termTail>) ={+,-, €}
FIRST(<factorTail>) ={* /, €}

Technically, should write down production giving
the terminal — leave out bere for clarity.

Follow

o Intuition: A terminal b € Follow(X) iff there is a
derivation S —=* vXbw for some v and m.

I.If S is the start symbol then put EOF € Follow(S)
2.For all rules of the form A ::= wXy,
d.Add all elements of First(v) to Follow(X)
b. If v can derive the empty string then add all elts of
Follow(A) to Follow(X)

* Follow(X) only used if can derive empty string
from X.

nly needed to
calculate for

Follow for Arithmetiq9
<termTail>,

FOLLOW (<exp>) STEOF,) } <factorTuil> |

FOLLOW (<termTail>) = FOLEOW/(<exp>) = { EOF,) }
FOLLOW /(<term>) = FIRST(<termTail>) U
FOLLOW /(<exp>) U FOLLOW (<termTail>)
={+ -, EOF,)}
FOLLOW (<factorTail>) = { +, -, EOF,) }
FOLLOW (<factor>) = {*/, +, -, EOF }
FOLLOW (<addop>) = { (NUM, ID } Not needed!
FOLLOW (<mulop>) = { NUM, ID }

Predictive Parsing, redux
Goal: a;a,...an
S
— 2.2, Xp

Want next terminal character derived to be a,

Need to apply a production X ::= y where
1) Y can eventually derive a string starting with a; or
2) If X can derive the empty string, then see
if B can derive a string starting with a;.

Building Table

e Put X ::= a in entry (X,a) if either
- ain First(a), or
- e in First(a) and a in Follow(X)
* Consequence: X ::= o in entry (X,a) iff there is

a derivation s.t. applying production can
eventually lead to string starting with a.

Need Unambiguous

 No table entry should have more than one production
to ensure it’s unambiguous, as otherwise we
don’t know which rule to apply:.

e Laws of predictive parsing:

- If A= ol ..l 0 then for all i# j,
First(ow) N First(ay = .

- If X =* ¢, then First(X) N Follow(X) = .

e Laws of predictive parsing:

- If A=y l..l an then for all i#j,
First(aw) N First(ay = O.

- If X =* ¢, then First(X) N Follow(X) = &.

® >nd is OK for arithmetic:

- FIRST(<termTail>) ={ +,-, €}

- FOLLOW/(<termTails) { EOF,) } } —

0 overlap!
- FIRST(<factorTail>) = {*,/, € } }

- FOLLOW / (<factorTail>) = { +, -, EOF,) }

See ArithParse.bs

Non-
terminals

ID | NUM | Addop | Mulop| () | EOF

<exp> I I I

<termTail> 2 3 3

<term> 4 4 4

<fact Tuil> 6 5 6 6

<factor> 9 8 7

<addop> 10

<mulop> II

Read off from table which production to apply!

More Options

* Parser Combinators
- Domain specific language for parsing.
- Even easier to tie to grammar than recursive descent
- Build into Haskell and Scala, definable elsewhere

o Talk about when cover Scala

Parser Combinators in Scala

Syntax tree building code

def multOp = ("*" | "/") mitted

defaddOp = ("+" ["-")

def factor = "(" -> expr <~ ")" | nume¢ricLit **{.}
def term = factor - (factorTail*) ** {..}}

def factorTail = multOp - factor "{...}

def expr = term - (termTail*) ** {...}

def termTail = addOp - term “*{...}

