

CSCI 101 Spring, 2019

Kim Bruce

Closure properties of CFL's

- Already shown closed under
 - concatenation, union, Kleene*, reversal, substitution
- Also closed under intersection with regular set.
 - Product machine
- Not closed under intersection, difference, or complement.
 - Why doesn't product work for intersection?

Counter Example

• Let

- $L_r = \{a^n b^n c^m \mid m, n \ge 0\}$, clearly cfl
- $L_2 = \{a^m b^n c^n \mid m, n \ge 0\}$, clearly cfl

• $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ is not cfl

- CFL's not closed under intersection
- Spose cfl's closed under complement
 - I.e., if L is cfl then $L^c = \Sigma^* L$ is cfl.
 - Then $L_r\cap L_2$ = $(L_1^c\cup L_2^c)^c$ would be cfl. Contradiction! $CFLs \ not \ closed \\ under \ complement$

- CFL's not closed under complement, difference, or intersection.
 - If closed under difference then would be closed under complement!
- Closure can be used to prove languages not cfl.
 - Spose L = {w | $\#_a(w) = \#_b(w) = \#_c(w)$ } is cfl
 - Then $L \cap a^*b^*c^* = \{a^nb^nc^n \mid n \ge 0\}$, which is not cfl
 - Because cfl's closed under \cap w/ regular set, L not cfl

Algorithms for CFL's

- Given a cfg, G, and w in Σ^* , is w $\in L(G)$?
- Given a cfg, G, is $L(G) = \emptyset$?
- Given a cfg, G, is L(G) infinite?
- All are decidable!

Is $w \in L(G)$?

- Special case if $w = \varepsilon$, see next slide.
- Convert G to CNF G'
- If |w| = n look at all derivations of length
 ≤ 2 |w| -1. If not there, then not in language.
- How efficient? Let |w| = n
 - $|R|^{2n-1}$ derivations, each of length 2n-1. Thus O(n 2ⁿ)
 - With work (see later), can find O(n³) algorithm.
 - Want O(n)!!

Is ε in L(G)?

- Say A is nullable iff $A \Rightarrow^* \epsilon$.
- Lemma: A is nullable iff
 - $A \rightarrow \varepsilon$ or
 - $A \rightarrow B_1...B_n$ and all B_i are nullable
- To see if ε in L(G), see if S is nullable.

Algorithms for CFL's

- Given a cfg, G, and w in Σ^* , is w $\in L(G)$?
- Given a cfg, G, is $L(G) = \emptyset$?
- Given a cfg, G, is L(G) infinite?
- All are decidable!

Thinning cfg

- Say non-terminal V is non-productive if there is no string w ∈ Σ* s.t. V ⇒* w.
- Algorithm: Start with G' = G
 - Mark every terminal in G' as productive
 - Until entire pass through R w/no marking
 - For each $X \rightarrow \alpha$ in R: If every symbol in α marked as productive, but X not yet marked productive, then mark it as productive
 - Remove from $V_{G^{\prime}} \, \mbox{all non-productive symbols}$
 - Remove from $R_{\rm G^\prime}$ all rules w/non-productive symbols on left or right side.

Algorithm for Emptiness

• Run algorithm to mark non-productive symbols. If S non-productive then $L(G) = \emptyset$.

Algorithm for Finiteness

- Let G be cfg. Use proof of pumping lemma.
 - Let G' be equivalent grammar in CNF.
 - Let n = #non-terminals. Let $k = 2^{n+1}$.
 - If there is a $w \in L(G)$ s.t. |w| > k then can pump, so ∞
 - Claim if $L(G) \propto$ then exist $w \in L(G)$ s.t. $k < |w| \le 2k$.
 - Spose fails. Then ∞ , so let $w' \in L(G)$ be shortest s.t. |w'| > 2k.
 - Pump with i = 0 to get shorter. But |vxy| < k & thus |vy| < k.
 - Thus $uxz \in L(G)$, |uxz| < |w'|, but |uxz| > k. Contradiction to assumption w' shortest!
 - Thus L(G) is ∞ iff exists $w \in L(G)$ s.t. $k < |w| \le 2k$

Parsing CFL's

- Created non-deterministic PDA.
 - Backtracking computation hard to get right.
 - Having to backtrack on input painful
- More efficient dynamic programming
- Later see deterministic language better

Compiler Structure

- Analysis:
 - Break into lexical items, build parse tree, annotate parse tree (e.g. via type checking)
- Synthesis:
 - generate simple intermediate code, optimization (look at instructions in context), code generation, linking and loading.

Parsing CFL's

- Created non-deterministic PDA.
 - Backtracking computation hard to get right.
 - Having to backtrack on input painful
- More efficient via dynamic programming
- Deterministic language better as can get linear recognizer.
 - LR(1) and LL(1) only require looking at next token of input.

CYK (for non-deterministic)

- Convert cfg G to G' in Chomsky Normal Form
- Let $w = w_i...w_n$ be string to be parsed. Define $\alpha(i,j)$ to be $\{B \mid B \Rightarrow^* w_i...w_j\}$
 - So w $\in L(G)$ iff S $\in \alpha(r,n)$
 - Key idea: What non-terminals give substrings?
- Recursive definition:
 - $\alpha(i,i) = \{C \mid C \rightarrow w_i\}$
 - $\alpha(i,k) = \{C \mid C \rightarrow AB \& A \in \alpha(i,j) \land B \in \alpha(j+1,k) \text{ for some } j\}$

Fill in Table

α(1,1)	α(1,2)	α(1,3)	<	α(1, n-1)	α(1, n)
	a(2,2)	α(2,3)		α(2,11-1)	α(2,n)
		α(3,3)		α(3,13-1)	a(3,n)
			-		
				α(n-1,n-1)	α(n *1, n)
					$\alpha(n,n)$

Each entry computed from entries in same row & column: $\alpha(1,3)$ from $\alpha(1,1) \& \alpha(2,3), \alpha(1,2) \& \alpha(3,3),$ etc. Slide across row and down column. Why O(n³)?

Using CYK

- Let G be grammar for balanced parens in CNF:
 - $S \rightarrow SS, S \rightarrow LT, S \rightarrow LR$
 - $T \rightarrow SR$
 - $L \rightarrow (, R \rightarrow)$
- Parse ()(())
- Generally most entries are empty
- What if two entries in same slot?
 - Better to store rule rather than just left-hand side.

Predictive Parsing

- Want to be able to parse languages without backtracking (even done efficiently).
- Talked earlier about deterministic pda's.
 - No choice as to what to do at each step.
- Some languages seem deterministic, but don't quite work with that definition.
 - Book uses L = $a^* \cup \{a^n b^n \mid n \ge 0\}$
 - Empty stack when at end if no b's.

Deterministic CFL

- L is deterministic context-free iff L\$ can be accepted by a deterministic pda.
 - Easy to show L deterministic $cfl \Rightarrow L cfl$
 - Guess when about to read \$, then read no more input
- Deterministic cfl's closed under complement.
 - Reversing accept easy, but also have to worry about stack not empty, etc.
 - More complex -- see text.