Lecture 12: Closure

operations and algorithms for
CFLs

CSCI 101
Spring, 2019

Kim Bruce

Closure properties of CFLs

* Already shown closed under
¢ concatenation, union, Kleene*, reversal, substitution

e Also closed under intersection with regular set.

® Product machine

* Not closed under intersection, difference, or
complement.

* Why doesn’t product work for intersection?

Counter Example

e Let
e L,={anbncm | m, n > o}, clearly cfl
e L, ={ambncn I m, n > o}, clearly cfl

CFLs not closed
e L, NL,={abrc | n > o} is not cfl under intersection

* Spose cfl’s closed under complement
e le. if Liscfl then Le=3*-Lis cfl.

e ThenL,NL, = U L, would be cfl. Contradiction!
CFELS not closed

under complement

e CFIs not closed under complement,
difference, or intersection.

e If closed under difference then would be closed under
complement!

e Closure can be used to prove languages not cfl.
e Spose L = {w | #.w) = #,(w) = #wW)} is cfl
e Then L N a*b*c* = {anbncn | n = o}, which is not cfl

o Because cfl’s closed under N w/ regular set, L not cfl

Algorithms for CFLs

* Given a cfg, G, and w in Z*, is w € L(G)?
* Given a cfg, G, is L(G) = &?

e Given a cfg, G, is L(G) infinite?

e All are decidable!

Is w € L(G)?

* Special case if w = €, see next slide.
* Convert G to CNF G’

e If lwl = n look at all derivations of length

<2 Iwl-1. If not there, then not in language.
* How efficient? Let twl=n

o Rl derivations, each of length 2n-1. Thus O(n 20)

o With work (see later), can find O(n3) algorithm.

e Want O(n)!!

Is ¢ in L(G)?

e Say A is nullable iff A =* €.

e Lemma: A is nullable iff
e A—c¢cor

e A — B....B, and all B; are nullable

e To see if € in L(G), see if S is nullable.

Algorithms for CFLs

e Given a cfg, G, and w in 2* is w € L(G)?
e Given a cfg, G, is L(G) = &?

* Given a cfg, G, is L(G) infinite?

e All are decidable!

Thinning cfg

e Say non-terminal V is non-productive if there is

no stringw € 2*s.t. V="w

* Algorithm: Start with G’ =G

e Mark every terminal in G’ as productive

Until entire pass through R w/no marking

e ForeachX — ain R: If every symbol in o marked as productive,

but X not yet marked productive, then mark it as productive

Remove from Vg all non-productive symbols

left or right side.

Remove from R all rules w/non-productive symbols on

Algorithm for Emptiness

e Run algorithm to mark non-productive
symbols. If S non-productive then L(G) = &.

Algorithm for Finiteness

* Let G be cfg. Use proof of pumping lemma.
e Let G’ be equivalent grammar in CNF.
e Let n =#non-terminals. Let k = 2n+1,

e If there is aw € L(G) s.t. Iwl > k then can pump, so oo

e Claim if L(G) o then exist w € L(G) s.t. k< Iwl < 2k.
e Spose fails. Then oo, so let w’ € L(G) be shortest s.t. Iw’l > 2k.
e Pump with i = o to get shorter. But lvxyl < k & thus Ivyl < k.

o Thus uxz € I(G), luxzl < W, but luxzl > k. Contradiction to
assumption w’ shortest!

* Thus L(G) is = iff exists w € L(G) s.t. k < Iwl < 2k

Parsing CFLs

¢ Created non-deterministic PDA.
e Backtracking computation hard to get right.

e Having to backtrack on input painful
* More efficient dynamic programming

* Later see deterministic language better

Compiler Overview

Compiler Structure

* Analysis:

* Break into lexical items, build parse tree, annotate parse
tree (e.g. via type checking)

* Synthesis:

e generate simple intermediate code, optimization (look at
instructions in context), code generation, linking and

loading.
Symbol Table Analysis
* Symbol table:
o Contains all id names, Source _ Lexical Lexical Syntax Parse | Semnantics __ Annotated

o kind of id (vble, array name, proc name, formal
parameter),

* type of value,

e where visible, etc.

Program Analysis Ttems Analysis ~ Tree Analysis ~ Parse Tree

Symbol Table
Other Tables

Synthesis

Optimized
Annotated

Inter Code_Inter. Optimiz- _Intermed. Code
Parse Tree Generation C°9€ ation Code Generation
Symbol Table
Other Tables

Object
Code

Focus

e Assume lexical analysis done
e Described by regular expressions
* Recognized by DFSM

¢ Resulting input is stream of tokens

* Focus on building parse trees

Parsing CFLs

* Created non-deterministic PDA.
o Backtracking computation hard to get right.

o Having to backtrack on input painful
* More efficient via dynamic programming

* Deterministic language better as can get linear
recognizer.

o LR() and LL(1) only require looking at next token of
input.

CYK (for non-deterministic)

e Convert cfg G to G’ in Chomsky Normal Form

* Let w = wi...wp, be string to be parsed. Define
Ot(i,j) to be {B| B =* Wi...Wj}

e Sow € L(G) iff S € a(1,n)

e Key idea: What non-terminals give substrings?
® Recursive definition:

e aG,i) ={C|C—wi}

* a@,k) ={CIC — AB & A € a(i,j)aB € a(j+1,k) for some j}

Fill in

Table

alr ,.[L

a(l}lk

N

OL(I,DRIL

al1,n)

o

2)

alime)

\afz,n)

a3

[~ a6G,n)

T

E(*&LQ-I)

%I,n)

~u(n,n)

Each entry computed from entries in same row & column:

a(1,3) from (1,1 & a(2,3), a(1,2) & a(3,3), etc.

Slide across row and down column.

Why O(n3)?

Using CYK

* Let G be grammar for balanced parens in CNF:
e §—5S, S —LT, S—LR
e T—SR
o [,— (’ R —)

* Parse () (())

e Generally most entries are empty

e What if two entries in same slot?

e Better to store rule rather than just left-hand side.

Predictive Parsing

e Want to be able to parse languages without
backtracking (even done efficiently).

« Talked earlier about deterministic pda’s.

* No choice as to what to do at each step.

* Some languages seem deterministic, but don’t
quite work with that definition.

e Book uses L =a* U {anb» | n > o}

* Empty stack when at end if no b’s.

Deterministic CFL

e L is deterministic context-free iff L$ can be
accepted by a deterministic pda.

* Easy to show L deterministic c¢fl = L cfl
e Guess when about to read $, then read no more input
* Deterministic cfl’s closed under complement.

e Reversing accept easy, but also have to worry about stack
not empty, etc.

e More complex —- see text.

