Lecture 12: Closure operations and algorithms for CFLs
 CSCI ioi
 Spring, 2019
 Kim Bruce

Counter Example

- Let
- $\mathrm{L}_{\mathrm{I}}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{m}} \mid \mathrm{m}, \mathrm{n} \geq 0\right\}$, clearly cfl
- $L_{2}=\left\{a^{m} b^{n} c^{n} \mid m, n \geq 0\right\}$, clearly cfl
- $L_{I} \cap L_{2}=\left\{a^{n} b^{n} c^{\mathrm{n}} \mid n \geq 0\right\}$ is not $c f l$ under intersection
- Spose cfl's closed under complement
- I.e., if L is $c f$ then $L^{c}=\Sigma^{*}-L$ is cfl.
- Then $L_{1} \cap L_{2}=\left(L_{1}{ }^{\mathrm{c}} \cup \mathrm{L}_{2}{ }^{\mathrm{c}}\right)^{\mathrm{c}}$ would be cfl. Contradiction!

> CFL's not closed
under complement

Closure properties of CFL's

- Already shown closed under
- concatenation, union, Kleene*, reversal, substitution
- Also closed under intersection with regular set
- Product machine
- Not closed under intersection, difference, or complement.
- Why doesn't product work for intersection?
- CFL's not closed under complement, difference, or intersection.
- If closed under difference then would be closed under complement!
- Closure can be used to prove languages not cfl.
- Spose $L=\left\{w \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$ is cfl
- Then $L \cap a^{*} b^{*} c^{*}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, which is not $c f l$
- Because cfl's closed under $\cap \mathrm{w} /$ regular set, L not cfl

Algorithms for CFL's

- Given a cfg, G, and w in Σ^{*}, is $w \in L(G)$?
- Given a cfg, G, is $L(G)=\varnothing$?
- Given a cfg, G, is $L(G)$ infinite?
- All are decidable!

Is ε in $L(G)$?

- Say A is nullable iff $\mathrm{A} \Rightarrow^{*} \varepsilon$.
- Lemma: A is nullable iff
- $\mathrm{A} \rightarrow \varepsilon$ or
- $A \rightarrow B_{1} \ldots B_{n}$ and all B_{i} are nullable
- To see if ε in $L(G)$, see if S is nullable.

Is w $\in L(G)$?

- Special case if $\mathrm{w}=\varepsilon$, see next slide.
- Convert G to CNF G'
- If $|w|=n$ look at all derivations of length $\leq 2 \mid \mathrm{wl}-\mathrm{I}$. If not there, then not in language.
- How efficient? Let $|w|=n$
- $\mid \mathrm{R}^{2 \mathrm{n}-\mathrm{I}}$ derivations, each of length $2 \mathrm{n}^{-\mathrm{I}}$. Thus $\mathrm{O}\left(\mathrm{n} 2^{\mathrm{n}}\right)$
- With work (see later), can find $\mathrm{O}(\mathrm{n} 3)$ algorithm.
- Want $O(n)!$!

Algorithms for CFL's

- Given a cfg, G, and w in Σ^{*}, is $w \in L(G)$?
- Given a cfg, G, is $L(G)=\varnothing$?
- Given a cfg, G, is $L(G)$ infinite?
- All are decidable!

Thinning cfg

- Say non-terminal V is non-productive if there is no string $\mathrm{w} \in \Sigma^{*}$ s.t. $\mathrm{V} \Rightarrow^{*}$ w.
- Algorithm: Start with $\mathrm{G}^{\prime}=\mathrm{G}$
- Mark every terminal in G^{\prime} as productive
- Until entire pass through $\mathrm{R} w / n o$ marking
- For each $\mathrm{X} \rightarrow \alpha$ in R: If every symbol in α marked as productive, but X not yet marked productive, then mark it as productive
- Remove from V_{G} all non-productive symbols
- Remove from $\mathrm{R}_{G^{\prime}}$ all rules w/non-productive symbols on left or right side.

Algorithm for Emptiness

- Run algorithm to mark non-productive symbols. If S non-productive then $L(G)=\varnothing$.

Algorithm for Finiteness

- Let G be cfg. Use proof of pumping lemma.
- Let G' be equivalent grammar in CNF.
- Let $\mathrm{n}=\#$ non-terminals. Let $\mathrm{k}=2^{\mathrm{ntr}}$.
- If there is a $w \in L(G)$ s.t. $\mid w l>k$ then can pump, so ∞
- Claim if $L(G) \infty$ then exist $w \in L(G)$ s.t. $k<|w| \leq 2 k$.
- Spose fails. Then ∞, so let $w^{\prime} \in L(G)$ be shortest s.t. $\left|w^{\prime}\right|>2 k$.
- Pump with $\mathrm{i}=\mathrm{o}$ to get shorter. But $|\mathrm{vxy}|<\mathrm{k} \&$ thus $|\mathrm{vyl}|<\mathrm{k}$.
- Thus uxz $\in L(G)$, $|u x z|<\left|w^{\prime}\right|$, but luxz $\mid>k$. Contradiction to assumption w' shortest!
- Thus $L(G)$ is ∞ iff exists $w \in L(G)$ s.t. $k<|w| \leq 2 k$

Compiler Overview

Symbol Table

- Symbol table:
- Contains all id names,
- kind of id (vble, array name, proc name, formal parameter),
- type of value,
- where visible, etc.

Compiler Structure

- Analysis:
- Break into lexical items, build parse tree, annotate parse tree (e.g. via type checking)
- Synthesis:
- generate simple intermediate code, optimization (look at instructions in context), code generation, linking and loading.

Synthesis

Parsing CFL's

- Created non-deterministic PDA.
- Backtracking computation hard to get right.
- Having to backtrack on input painful
- More efficient via dynamic programming
- Deterministic language better as can get linear recognizer.
- LR(I) and LL(I) only require looking at next token of input.

Focus

- Assume lexical analysis done
- Described by regular expressions
- Recognized by DFSM
- Resulting input is stream of tokens
- Focus on building parse trees

CYK (for non-deterministic)

- Convert cfg G to G' in Chomsky Normal Form
- Let $\mathrm{w}=\mathrm{w}_{\mathrm{I}} \ldots \mathrm{w}_{\mathrm{n}}$ be string to be parsed. Define $\alpha(\mathrm{i}, \mathrm{j})$ to be $\left\{\mathrm{B} \mid \mathrm{B} \Rightarrow^{*} \mathrm{w}_{\mathrm{i}} \ldots \mathrm{w}_{\mathrm{j}}\right\}$
- So $w \in L(G)$ iff $S \in \alpha(\mathrm{r}, \mathrm{n})$
- Key idea: What non-terminals give substrings?
- Recursive definition:
- $\alpha(\mathrm{i}, \mathrm{i})=\left\{\mathrm{C} \mid \mathrm{C} \rightarrow \mathrm{w}_{\mathrm{i}}\right\}$
- $\alpha(\mathrm{i}, \mathrm{k})=\{\mathrm{C} \mid \mathrm{C} \rightarrow \mathrm{AB} \& \mathrm{~A} \in \alpha(\mathrm{i}, \mathrm{j}) \wedge \mathrm{B} \in \alpha(\mathrm{j}+\mathrm{I}, \mathrm{k})$ for some j$\}$

Fill in Table

$\alpha(\mathrm{I}, \mathrm{I})$	$\alpha(\mathrm{r}, 2)$	$\alpha(\mathrm{n}, 3)$	\ldots	$\alpha(\mathrm{I}, \mathrm{n}-\mathrm{I})$	$\alpha(\mathrm{I}, \mathrm{n})$
	$\alpha(2,2)$	$\alpha(2,3)$	\ldots	$\alpha(2, \mathrm{n}-\mathrm{I})$	$\alpha(2, \mathrm{n})$
		$\alpha(3,3)$	\ldots	$\alpha(3, \mathrm{n}-\mathrm{I})$	$\alpha(3, \mathrm{n})$
				\ldots	\ldots
				$\alpha(\mathrm{n}-\mathrm{I}, \mathrm{n}-\mathrm{I})$	$\alpha(\mathrm{n}-\mathrm{I}, \mathrm{n})$
					$\alpha(\mathrm{n}, \mathrm{n})$

Each entry computed from entries in same row \& column: $\alpha(\mathrm{I}, 3)$ from $\alpha(\mathrm{I}, \mathrm{I}) \& \alpha(2,3), \alpha(\mathrm{I}, 2) \& \alpha(3,3)$, etc.
Slide across row and down column.
Why O(n3)?

Using CYK

- Let G be grammar for balanced parens in CNF:
- $\mathrm{S} \rightarrow \mathrm{SS}, \mathrm{S} \rightarrow \mathrm{LT}, \mathrm{S} \rightarrow \mathrm{LR}$
- $\mathrm{T} \rightarrow \mathrm{SR}$
- $\mathrm{L} \rightarrow(, \mathrm{R} \rightarrow)$
- Parse () (())
- Generally most entries are empty
- What if two entries in same slot?
- Better to store rule rather than just left-hand side.

Deterministic CFL

- L is deterministic context-free iff $\mathrm{L} \$$ can be accepted by a deterministic pda.
- Easy to show L deterministic $\mathrm{cfl} \Rightarrow \mathrm{Lcf}$
- Guess when about to read $\$$, then read no more input
- Deterministic cfl's closed under complement.
- Reversing accept easy, but also have to worry about stack not empty, etc.
- More complex -- see text.

