
Lecture 12: Closure
operations and algorithms for

CFLs
CSCI 101

Spring, 2019

Kim Bruce

Closure properties of CFL’s

• Already shown closed under

• concatenation, union, Kleene*, reversal, substitution

• Also closed under intersection with regular set.

• Product machine

• Not closed under intersection, difference, or
complement.

• Why doesn’t product work for intersection?

Counter Example

• Let

• L1 = {anbncm | m, n ≥ 0}, clearly cfl

• L2 = {ambncn | m, n ≥ 0}, clearly cfl

• L1 ∩ L2 = {anbncn | n ≥ 0} is not cfl

• Spose cfl’s closed under complement

• I.e., if L is cfl then Lc = Σ* - L is cfl.

• Then L1 ∩ L2 = (L1c ∪ L2c)c would be cfl. Contradiction!

CFL’s not closed
under intersection

CFL’s not closed
under complement

• CFL’s not closed under complement,
difference, or intersection.

• If closed under difference then would be closed under
complement!

• Closure can be used to prove languages not cfl.

• Spose L = {w | #a(w) = #b(w) = #c(w)} is cfl

• Then L ∩ a*b*c* = {anbncn | n ≥ 0}, which is not cfl

• Because cfl’s closed under ∩ w/ regular set, L not cfl

Algorithms for CFL’s

• Given a cfg, G, and w in Σ*, is w ∈ L(G)?

• Given a cfg, G, is L(G) = ∅?

• Given a cfg, G, is L(G) infinite?

• All are decidable!

Is w ∈ L(G)?

• Special case if w = ε, see next slide.

• Convert G to CNF G’

• If |w| = n look at all derivations of length  
≤ 2 |w| -1. If not there, then not in language.

• How efficient? Let |w| = n

• |R|2n-1 derivations, each of length 2n-1. Thus O(n 2n)

• With work (see later), can find O(n3) algorithm.

• Want O(n)!!

Is ε in L(G)?

• Say A is nullable iff A ⇒* ε.

• Lemma: A is nullable iff

• A → ε or

• A → B1…Bn and all Bi are nullable

• To see if ε in L(G), see if S is nullable.

Algorithms for CFL’s

• Given a cfg, G, and w in Σ*, is w ∈ L(G)?

• Given a cfg, G, is L(G) = ∅?

• Given a cfg, G, is L(G) infinite?

• All are decidable!

✔

Thinning cfg
• Say non-terminal V is non-productive if there is

no string w ∈ Σ* s.t. V ⇒* w.

• Algorithm: Start with G’ = G

• Mark every terminal in G’ as productive

• Until entire pass through R w/no marking

• For each X → α in R: If every symbol in α marked as productive,
but X not yet marked productive, then mark it as productive

• Remove from VG’ all non-productive symbols

• Remove from RG’ all rules w/non-productive symbols on
left or right side.

Algorithm for Emptiness

• Run algorithm to mark non-productive
symbols. If S non-productive then L(G) = ∅.

Algorithm for Finiteness
• Let G be cfg. Use proof of pumping lemma.

• Let G’ be equivalent grammar in CNF.

• Let n = #non-terminals. Let k = 2n+1.

• If there is a w ∈ L(G) s.t. |w| > k then can pump, so ∞

• Claim if L(G) ∞ then exist w ∈ L(G) s.t. k< |w| ≤ 2k.

• Spose fails. Then ∞, so let w’ ∈ L(G) be shortest s.t. |w’| > 2k.

• Pump with i = 0 to get shorter. But |vxy| < k & thus |vy| < k.

• Thus uxz ∈ L(G), |uxz| < |w’|, but |uxz| > k. Contradiction to
assumption w’ shortest!

• Thus L(G) is ∞ iff exists w ∈ L(G) s.t. k < |w| ≤ 2k

Parsing CFL’s

• Created non-deterministic PDA.

• Backtracking computation hard to get right.

• Having to backtrack on input painful

• More efficient dynamic programming

• Later see deterministic language better

Compiler Overview

Compiler Structure

• Analysis:

• Break into lexical items, build parse tree, annotate parse
tree (e.g. via type checking)

• Synthesis:

• generate simple intermediate code, optimization (look at
instructions in context), code generation, linking and
loading.

Symbol Table

• Symbol table:

• Contains all id names,

• kind of id (vble, array name, proc name, formal
parameter),

• type of value,

• where visible, etc.

Analysis

Source
Program

Lexical
Analysis

Symbol Table
Other Tables

Lexical
Items

Syntax
Analysis

Parse
Tree

Semantics
Analysis

Annotated
Parse Tree

Synthesis

Symbol Table
Other Tables

Inter.
Code

Optimiz-
ation

Optimized
Intermed.

Code
Code

Generation
Object
Code

Inter. Code
Generation

Annotated
Parse Tree

Focus

• Assume lexical analysis done

• Described by regular expressions

• Recognized by DFSM

• Resulting input is stream of tokens

• Focus on building parse trees

Parsing CFL’s

• Created non-deterministic PDA.

• Backtracking computation hard to get right.

• Having to backtrack on input painful

• More efficient via dynamic programming

• Deterministic language better as can get linear
recognizer.

• LR(1) and LL(1) only require looking at next token of
input.

CYK (for non-deterministic)

• Convert cfg G to G’ in Chomsky Normal Form

• Let w = w1...wn be string to be parsed. Define
α(i,j) to be {B | B ⇒* wi...wj}

• So w ∈ L(G) iff S ∈ α(1,n)

• Key idea: What non-terminals give substrings?

• Recursive definition:

• α(i,i) = {C | C→wi}

• α(i,k) = {C | C → AB & A ∈ α(i,j)∧B ∈ α(j+1,k) for some j}

Fill in Table
α(1,1) α(1,2) α(1,3) ... α(1,n-1) α(1,n)

α(2,2) α(2,3) ... α(2,n-1) α(2,n)

α(3,3) ... α(3,n-1) α(3,n)

...

α(n-1,n-1) α(n-1,n)

α(n,n)

Each entry computed from entries in same row & column:
α(1,3) from α(1,1) & α(2,3), α(1,2) & α(3,3), etc.

Slide across row and down column.
Why O(n3)?

Using CYK
• Let G be grammar for balanced parens in CNF:

• S → SS, S →LT, S→LR

• T → SR

• L → (, R →)

• Parse () (())

• Generally most entries are empty

•What if two entries in same slot?

• Better to store rule rather than just left-hand side.

Predictive Parsing

•Want to be able to parse languages without
backtracking (even done efficiently).

• Talked earlier about deterministic pda’s.

• No choice as to what to do at each step.

• Some languages seem deterministic, but don’t
quite work with that definition.

• Book uses L = a* ∪ {anbn | n ≥ 0}

• Empty stack when at end if no b’s.

Deterministic CFL

• L is deterministic context-free iff L$ can be
accepted by a deterministic pda.

• Easy to show L deterministic cfl ⇒ L cfl

• Guess when about to read $, then read no more input

• Deterministic cfl’s closed under complement.

• Reversing accept easy, but also have to worry about stack
not empty, etc.

• More complex -- see text.

