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Closure properties of CFL’s

• Already shown closed under 

• concatenation, union, Kleene*, reversal, substitution

• Also closed under intersection with regular set.

• Product machine

• Not closed under intersection, difference, or 
complement.

• Why doesn’t product work for intersection?

Counter Example

• Let 

• L1 = {anbncm | m, n ≥ 0}, clearly cfl

• L2 = {ambncn | m, n ≥ 0}, clearly cfl

• L1 ∩ L2 = {anbncn | n ≥ 0} is not cfl

• Spose cfl’s closed under complement

• I.e., if L is cfl then Lc = Σ* - L is cfl.

• Then L1 ∩ L2 = (L1c ∪ L2c)c would be cfl.  Contradiction!

CFL’s not closed 
under intersection

CFL’s not closed 
under complement

• CFL’s not closed under complement, 
difference, or intersection.

• If closed under difference then would be closed under 
complement!

• Closure can be used to prove languages not cfl.

• Spose L = {w | #a(w) = #b(w) = #c(w)} is cfl

• Then L ∩ a*b*c* = {anbncn | n ≥ 0}, which is not cfl

• Because cfl’s closed under ∩ w/ regular set, L not cfl



Algorithms for CFL’s

• Given a cfg, G, and w in Σ*, is w ∈ L(G)?

• Given a cfg, G, is L(G) = ∅?

• Given a cfg, G, is L(G) infinite?

• All are decidable!

Is w ∈ L(G)?

• Special case if w = ε, see next slide.

• Convert G to CNF G’

• If |w| = n look at all derivations of length  
≤ 2 |w| -1.  If not there, then not in language.

• How efficient?  Let |w| = n

• |R|2n-1 derivations, each of length 2n-1.  Thus O(n 2n)

• With work (see later), can find O(n3) algorithm.

• Want O(n)!!

Is ε in L(G)?

• Say A is nullable iff A ⇒* ε.

• Lemma: A is nullable iff 

• A → ε or 

• A → B1…Bn and all Bi are nullable

• To see if ε in L(G), see if S is nullable.

Algorithms for CFL’s

• Given a cfg, G, and w in Σ*, is w ∈ L(G)?

• Given a cfg, G, is L(G) = ∅?

• Given a cfg, G, is L(G) infinite?

• All are decidable!

✔



Thinning cfg
• Say non-terminal V is non-productive if there is 

no string w ∈ Σ* s.t. V ⇒* w.

• Algorithm:  Start with G’ = G

• Mark every terminal in G’ as productive

• Until entire pass through R w/no marking

• For each X → α in R:  If every symbol in α marked as productive, 
but X not yet marked productive, then mark it as productive

• Remove from VG’ all non-productive symbols

• Remove from RG’ all rules w/non-productive symbols on 
left or right side.

Algorithm for Emptiness

• Run algorithm to mark non-productive 
symbols.  If S non-productive then L(G) = ∅.

Algorithm for Finiteness
• Let G be cfg.  Use proof of pumping lemma.

• Let G’ be equivalent grammar in CNF.

• Let n = #non-terminals.  Let k = 2n+1.

• If there is a w ∈ L(G) s.t. |w| > k then can pump, so ∞

• Claim if L(G) ∞ then exist w ∈ L(G) s.t. k< |w| ≤ 2k.

•  Spose fails.  Then ∞, so let w’ ∈ L(G) be shortest s.t. |w’| > 2k.

• Pump with i = 0 to get shorter.  But |vxy| < k & thus |vy| < k.

• Thus uxz ∈ L(G), |uxz| < |w’|, but |uxz| > k.  Contradiction to 
assumption w’ shortest!

• Thus L(G) is ∞ iff exists w ∈ L(G) s.t. k < |w| ≤ 2k

Parsing CFL’s

• Created non-deterministic PDA.

• Backtracking computation hard to get right.

• Having to backtrack on input painful

• More efficient dynamic programming

• Later see deterministic language better



Compiler Overview

Compiler Structure

• Analysis:

• Break into lexical items, build parse tree, annotate parse 
tree (e.g. via type checking)

• Synthesis:

• generate simple intermediate code, optimization (look at 
instructions in context), code generation, linking and 
loading.

Symbol Table

• Symbol table: 

• Contains all id names, 

• kind of id (vble, array name, proc name, formal 
parameter), 

• type of value, 

• where visible, etc. 
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Focus

• Assume lexical analysis done

• Described by regular expressions

• Recognized by DFSM

• Resulting input is stream of tokens

• Focus on building parse trees

Parsing CFL’s

• Created non-deterministic PDA.

• Backtracking computation hard to get right.

• Having to backtrack on input painful

• More efficient via dynamic programming

• Deterministic language better as can get linear 
recognizer.

• LR(1) and LL(1) only require looking at next token of 
input.

CYK (for non-deterministic)

• Convert cfg G to G’ in Chomsky Normal Form

• Let w = w1...wn be string to be parsed.  Define 
α(i,j) to be {B | B ⇒* wi...wj}

• So w ∈ L(G) iff S ∈ α(1,n)

• Key idea:  What non-terminals give substrings?

• Recursive definition:

• α(i,i) = {C | C→wi}

• α(i,k) = {C | C → AB & A ∈ α(i,j)∧B ∈ α(j+1,k) for some j}



Fill in Table
α(1,1) α(1,2) α(1,3) ... α(1,n-1) α(1,n)

α(2,2) α(2,3) ... α(2,n-1) α(2,n)

α(3,3) ... α(3,n-1) α(3,n)

... ... ...

α(n-1,n-1) α(n-1,n)

α(n,n)

Each entry computed from entries in same row & column:
α(1,3) from α(1,1) & α(2,3), α(1,2) & α(3,3), etc.

Slide across row and down column.
Why O(n3)?

Using CYK
• Let G be grammar for balanced parens in CNF:

• S → SS, S →LT, S→LR

• T → SR

• L → (,   R → )

• Parse ( ) ( ( ) )

• Generally most entries are empty

•What if two entries in same slot?

• Better to store rule rather than just left-hand side.

Predictive Parsing

•Want to be able to parse languages without 
backtracking (even done efficiently).

• Talked earlier about deterministic pda’s.

• No choice as to what to do at each step.

• Some languages seem deterministic, but don’t 
quite work with that definition.

• Book uses L = a* ∪ {anbn | n ≥ 0}

• Empty stack when at end if no b’s.

Deterministic CFL

• L is deterministic context-free iff L$ can be 
accepted by a deterministic pda.

• Easy to show L deterministic cfl ⇒ L cfl

• Guess when about to read $, then read no more input

• Deterministic cfl’s closed under complement.

• Reversing accept easy, but also have to worry about stack 
not empty, etc.

• More complex -- see text.


