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Normal Forms

• Because of ε-productions, can be hard to 
determine if w in L.

• Parsers recognize terms of language and build abstract 
syntax tree (thinned down parse tree)

• Normal forms can make it easier.

• Chomsky and Greibach Normal Forms

• Do only Chomsky

Chomsky Normal Form 
(CNF)

• A grammar is in Chomsky Normal Form if all 
productions are of form A → BC, or A → a. 
Advantages:

• Parse trees are all binary

• To see if w in L try all derivations of length < 2|w|

• Efficient parsing algorithms (CYK) 

• but watch blowup in size!

• Disadvantage: Leave out ε!



Converting grammar to CNF

• Theorem:  If L is a cfl, there is a cfg G’ in 
Chomsky Normal Form such that L(G’) = L - {ε}

• Proof:

• Eliminate ε-productions from all vbles

• If A → ε is a rule, then drop it and for all rules of the form B → w, 
add all rules of the form B → w’ where w’ formed by dropping one or 
more A’s from right side of w.

• Note:  Don’t add B → ε if it has already been dropped.

Converting grammar to CNF

• Eliminate unit productions (size of right is 1)

• If A → B is a rule, then drop it, and for each production 
B → w, add A → w.

• Note:  If A → w is a unit production that was already 
eliminated, then don’t add it back.

• Eliminate long right sides:

• If A → W1...Wn where each Wi ∈ V, replace by

• A → W1X1, X1 → W2X2, ..., Xn-2 → Wn-1 Wn where Xi are new.

Converting grammar to CNF

• Eliminate terminals on the right side:

• For each terminal a ∈ Σ, add new non-terminal Na and 
production Na → a.  For each production of the form U 
→ w, for |w| = 2, replace all terminals a in w by 
corresponding Na.

• Should be clear get same language except for ε.

Example

• Start with S → UaabU,  
                  U → aU | bU | ε

• Eliminate ε-productions:

• U →aU | bU | a | b 
S → UaabU | aabU | Uaab | aab

• Eliminate unit productions:

• None -- so nothing to do



Example

S →U C0 | AD0 | UE0 | AF0  
C0 → AC1 
C1 → AC2  
C2 → BU 
D0 → AD1 
D1 → BU 
E0 → AE1 

E1 → AB 
F0 → AB

U →AU | BU | a | b  
A→a 
B→b 

• Shorten long productions & eliminate terminals

U →aU | bU | a | b 
S → UaabU | aabU | Uaab | aab

Pumping Lemma for CFLs

• For each CFL L, there is a k > 1 s.t. for all w ∈ L 
of length at least k, there are u, v, x, y, and z s.t.

• w=uvxyz; 

• |vxy| ≤ k;

• vy ≠ ε; and

• for each non-negative integer i, uvixyiz ∈ L.

• More complex than regular, but same idea of 
repetition

Use parse trees
• Theorem:  Length of the yield of tree of height 

h and branching factor b is ≤ bh

• Let G be in CNF w/ n non-terminals.  If T 
generated by G and no non-terminal appears 
more than once on any path.  Then

• Max height of T is n

• Max length of T’s yield is 2n

• Equivalently:  if w in L(G) s.t. |w| > 2n then the 
parse tree height is greater than n.

Proof of Pumping
• Let G be grammar, and G’ be equivalent grammar in CNF.  

Thus branching factor = 2.

• Proof by picture:  let k = 2n+1 and w s.t. |w| ≥ k.  Therefore 
height > n & hence exists repeated non-terminal on a path

next repeated

lowest repeated



PL Proof

• From picture

• S ⇒* uXz

• X ⇒* vXy  (Note: vy ≠ ε)

• X ⇒* x

• |vxy| ≤ k (= 2n+1) because height ≤ n+1

• Hence can get

• S ⇒* uXz ⇒* uvXyz ⇒* uviXyiz ⇒* uvixyiz for any i

• Can also get S ⇒* uXz ⇒* uxz

Using Pumping Lemma

• To show L not cfl

• Opponent picks k

• I pick w s.t. |w| ≥ k

• They pick decomposition w = uvxyz s.t. |vxy| ≤ k, vy ≠ ε

• I show there is some i s.t. u vi x yi z ∉ L

• Note:  I can’t predict where vxy starts!

Example

• Show L = {anbncn | n ≥ 0} is not a cfl.

• Assume cfl w/k for P.L.  Choose w = ak bk ck.

• They break into w = uvxyz such that |vxy| ≤ k, vy ≠ ε.

• vxy cannot contain both a’s and c’s

• Spose vxy contains no c’s: get contradiction if pump!

• Similarly if no a’s

Example

• L = {ww : w ∈ {0,1}*}  is not cfl

• Spose cfl w/ k for P.L.  Let w = 0k1k0k1k

• They choose u,v,x,y,z s.t. |vxy| < k, vy ≠ ε

• If vy all in first 0 section then pumping by 2 disallows 
split: uvvxyyz = 0k+j1k0k1k where i > 0.  Can’t be split

• Same for other 3 homogeneous sections: 1*, o*, 1*

• Can’t reach around 3 sections as |vxy| < k

• Therefore straddle 2 sections.  Pump by 0.  

• E.g., if in middle 1*0*, get uxz = 0k1i0j1k ∉ L where i or j < k

Text does 
wcw



Closure properties of CFL’s

• Already shown closed under 

• concatenation, union, Kleene*, reversal, substitution

• Also closed under intersection with regular set.

• Product machine

• Not closed under intersection, difference, or 
complement.

• Why doesn’t product work for intersection?


