Lecture in: CFL normal forms \& pumping lemma

CSCI ioi
Spring, 2019
Kim Bruce

Take-home midterm coming in 2 weeks!

Chomsky Normal Form (CNF)

- A grammar is in Chomsky Normal Form if all productions are of form $\mathrm{A} \rightarrow \mathrm{BC}$, or $\mathrm{A} \rightarrow \mathrm{a}$. Advantages:
- Parse trees are all binary
- To see if w in L try all derivations of length < $2|w|$
- Efficient parsing algorithms (CYK)
- but watch blowup in size!
- Disadvantage: Leave out ε !

Converting grammar to CNF

- Theorem: If L is a cfl, there is a $\mathrm{cfg} \mathrm{G}^{\prime}$ in Chomsky Normal Form such that $L\left(G^{\prime}\right)=L-\{\varepsilon\}$
- Proof:
- Eliminate ε-productions from all vbles
- If $\mathrm{A} \rightarrow \varepsilon$ is a rule, then drop it and for all rules of the form $\mathrm{B} \rightarrow \mathrm{w}$, add all rules of the form $B \rightarrow w^{\prime}$ where w^{\prime} formed by dropping one or more A's from right side of w.
- Note: Don't add B $\rightarrow \varepsilon$ if it has already been dropped.

Converting grammar to CNF

- Eliminate terminals on the right side:
- For each terminal $a \in \Sigma$, add new non-terminal N_{a} and production $\mathrm{N}_{\mathrm{a}} \rightarrow \mathrm{a}$. For each production of the form U $\rightarrow \mathrm{w}$, for $|\mathrm{w}|=2$, replace all terminals a in w by corresponding N_{a}.
- Should be clear get same language except for ε.

Converting grammar to CNF

- Eliminate unit productions (size of right is I)
- If $A \rightarrow B$ is a rule, then drop it, and for each production $\mathrm{B} \rightarrow \mathrm{w}$, add $\mathrm{A} \rightarrow \mathrm{w}$.
- Note: If $A \rightarrow \mathrm{w}$ is a unit production that was already eliminated, then don't add it back.
- Eliminate long right sides:
- If $\mathrm{A} \rightarrow \mathrm{W}_{\mathrm{I}} \ldots \mathrm{W}_{\mathrm{n}}$ where each $\mathrm{W}_{\mathrm{i}} \in \mathrm{V}$, replace by
- $\mathrm{A} \rightarrow \mathrm{W}_{1} \mathrm{X}_{1}, \mathrm{X}_{\mathrm{I}} \rightarrow \mathrm{W}_{2} \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}-2} \rightarrow \mathrm{~W}_{\mathrm{n}-1} \mathrm{~W}_{\mathrm{n}}$ where X_{i} are new.

Example

- Start with $\mathrm{S} \rightarrow$ UaabU,

$$
\mathrm{U} \rightarrow \mathrm{aU}|\mathrm{bU}| \varepsilon
$$

- Eliminate ε-productions:
- $\mathrm{U} \rightarrow \mathrm{aU}|\mathrm{bU}| \mathrm{a} \mid \mathrm{b}$
$\mathrm{S} \rightarrow$ UaabU | aabU | Uaab | aab
- Eliminate unit productions:
- None -- so nothing to do

Example

- Shorten long productions \& eliminate terminals
$\mathrm{S} \rightarrow \mathrm{U} \mathrm{C}_{\circ}\left|\mathrm{AD}_{\circ}\right| \mathrm{UE}_{\circ} \mid \mathrm{AF}_{\circ}$
$\mathrm{C}_{\mathrm{o}} \rightarrow \mathrm{AC}_{\mathrm{I}} \quad \mathrm{U} \rightarrow \mathrm{aUlbUla\mid b}$
$\mathrm{C}_{\mathrm{I}} \rightarrow \mathrm{AC}_{2}$
$\mathrm{C}_{2} \rightarrow \mathrm{BU}$
$\mathrm{D}_{\mathrm{o}} \rightarrow \mathrm{AD}_{\mathrm{I}}$
$\mathrm{D}_{\mathrm{I}} \rightarrow \mathrm{BU}$
$\mathrm{E}_{\mathrm{o}} \rightarrow \mathrm{AE}_{\mathrm{I}}$
$\mathrm{E}_{\mathrm{I}} \rightarrow \mathrm{AB}$
$\mathrm{F}_{\circ} \rightarrow \mathrm{AB}$
$\mathrm{U} \rightarrow \mathrm{AU}|\mathrm{BU}| \mathrm{a} \mid \mathrm{b}$
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{b}$

Pumping Lemma for CFLs

- For each CFL L, there is a $k>i$ s.t. for all $w \in L$ of length at least k , there are $\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}$, and z s.t.
- $\mathrm{w}=\mathrm{u} v x y z$;
- $|v x y| \leq k ;$
- vy $\neq \varepsilon$; and
- for each non-negative integer i , uvixy${ }^{i} \mathrm{z}^{\mathrm{z}} \in \mathrm{L}$.
- More complex than regular, but same idea of repetition

Use parse trees

- Theorem: Length of the yield of tree of height h and branching factor b is $\leq b^{h}$
- Let G be in CNF w/ n non-terminals. If T generated by G and no non-terminal appears more than once on any path. Then
- Max height of T is n
- Max length of T's yield is 2^{n}
- Equivalently: if win L(G) s.t. $\mid \mathrm{wl}>2^{\mathrm{n}}$ then the parse tree height is greater than n.

Proof of Pumping

- Let G be grammar, and G' be equivalent grammar in CNF. Thus branching factor $=2$.
- Proof by picture: let $\mathrm{k}=2^{\mathrm{n}+\mathrm{r}}$ and w s.t. $|\mathrm{w}| \geq \mathrm{k}$. Therefore height $>\mathrm{n} \&$ hence exists repeated non-terminal on a path

w

PL Proof

- From picture
- $\mathrm{S} \Rightarrow^{*} \mathrm{uXz}$
- $\mathrm{X} \Rightarrow{ }^{*} \mathrm{vXy}$ (Note: $v y \neq \varepsilon$)
- $\mathrm{X} \Rightarrow{ }^{*} \mathrm{x}$
- $|v x y| \leq k\left(=2^{n+1}\right)$ because height $\leq n+1$
- Hence can get
- $\mathrm{S} \Rightarrow{ }^{*} \mathrm{uXz} \Rightarrow{ }^{*} \mathrm{uvXyz} \Rightarrow{ }^{*}$ uvi $\mathrm{Xy}^{i z} \Rightarrow{ }^{*}$ uvixyiz for any i
- Can also get $\mathrm{S} \Rightarrow^{*} \mathrm{uXz} \Rightarrow^{*} \mathrm{uxz}$

Using Pumping Lemma

- To show L not cfl
- Opponent picks k
- I pick w s.t. $|\mathrm{w}| \geq \mathrm{k}$
- They pick decomposition $\mathrm{w}=\mathrm{uvxyz}$ s.t. $|\mathrm{vxy}| \leq \mathrm{k}, \mathrm{vy} \neq \varepsilon$
- I show there is some i s.t. u vi $^{i} x y^{i} z \notin \mathrm{~L}$
- Note: I can't predict where vxy starts!

Example

- Show $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not a cfl.
- Assume cfl w / k for P.L. Choose $w=a^{k} b^{k} c^{k}$.
- They break into $w=u v x y z$ such that $|\mathrm{lvx}| \leq \mathrm{k}, \mathrm{vy} \neq \varepsilon$.
- vxy cannot contain both a's and c's
- Spose vxy contains no c's: get contradiction if pump!
- Similarly if no a's

Example

- $\mathrm{L}=\left\{\mathrm{ww}: \mathrm{w} \in\{0,1\}^{*}\right\}$ is not cfl

Text does

- Spose $\mathrm{cfl} w / \mathrm{k}$ for P.L. Let $w=o^{k} \mathrm{I}^{\mathrm{k}} 0^{\mathrm{k}} \mathrm{I}^{k}$
- They choose $\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ s.t. $|\mathrm{vxy}|<\mathrm{k}, \mathrm{vy} \neq \varepsilon$
- If vy all in first o section then pumping by 2 disallows split: uvvxyyz $=o^{k+j} I^{k} O^{k} I^{k}$ where $i>0$. Can't be split
- Same for other 3 homogeneous sections: $\mathrm{I}^{*}, \mathrm{o}^{*}, \mathrm{I}^{*}$
- Can't reach around 3 sections as $|\mathrm{vxy}|<\mathrm{k}$
- Therefore straddle 2 sections. Pump by o.
- E.g., if in middle $\mathrm{r}^{*} 0^{*}$, get $u x z=0 \mathrm{k}_{\mathrm{r}} \mathrm{i}_{\mathrm{oj}} \mathrm{r}^{\mathrm{k}} \notin \mathrm{L}$ where i or $\mathrm{j}<\mathrm{k}$

Closure properties of CFL's

- Already shown closed under
- concatenation, union, Kleene*, reversal, substitution
- Also closed under intersection with regular set.
- Product machine
- Not closed under intersection, difference, or complement.
- Why doesn't product work for intersection?

