Lecture io: Context-Free Grammars \& Push-Down Automata

CSCI ioi
Spring, 2019
Kim Bruce

Definitions

- A context-free grammar is a quadruple, $\mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{S})$ in which
- V is a finite set of variables, containing terminals and nonterminals.
- $\Sigma \subseteq \mathrm{V}$ is the set of terminals
- R is a finite set of productions of the form $U \rightarrow \alpha$, where U is a single nonterminal and α is a (possibly empty) string of terminals and nonterminals.
I.e., OK to write $\mathrm{U} \rightarrow \varepsilon$
- S is an element of V called the start symbol.

Derivations \& Parse Trees

- A sequence of the form
- $\mathrm{w}_{\mathrm{o}} \Rightarrow \mathrm{w}_{\mathrm{I}} \Rightarrow \ldots \Rightarrow \mathrm{w}_{\mathrm{n}}$ is called a derivation.
- It is left-most if at each step, the left-most non-terminal is replaced using a rule of the grammar.
- Similarly for right-most.
- Does the distinction matter?
- Not for meaning, but often important for parsers

Parse Trees

- A parse tree for grammar $G=(V, \Sigma, R, S)$ is a rooted ordered tree in which
- Every leaf node is labeled with an element of $\Sigma \cup\{\varepsilon\}$
- The root node is labeled S
- Every other node is labeled with an element of $\mathrm{V}-\Sigma$
- If m is a non-leaf node labeled X and the children of m are labeled $\mathrm{x}_{\mathrm{t}}, \ldots, \mathrm{x}_{\mathrm{n}}$ then R contains the rule $\mathrm{X} \rightarrow \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}$

Example

Parse Trees \& Derivations

- Given parse tree generally corresponds to several derivations of same string
- E.g., left-most \& right-most derivations
- Grammar G is ambiguous if there is at least one string in $L(G)$ that has more than one parse tree. G is unambiguous otherwise.
- I saw a man in the park with a telescope
- ... affects meaning
- Possible grammars for arithmetic expressions
- $\operatorname{Exp} \rightarrow \operatorname{Exp}$ Op Exp $|(\operatorname{Exp})|$ num $\mathrm{Op} \rightarrow+|-|*||$
versus
- Exp \rightarrow Exp Addop Term \mid Term

Term \rightarrow Term Mulop Factor 1 Factor
Factor \rightarrow (Exp) $)$ num
Addop $\rightarrow+1-$
Mulop \rightarrow *|/

Pushdown Automata

Pushdown Automata

- A pushdown automaton is a sextuple, (K, $\Sigma, \Gamma, \Delta, \mathrm{s}, \mathrm{A}$), where
- K is a finite set of states,
- Σ is a finite input alphabet,
- Γ is a finite stack alphabet,
- $s \in K$ is the start state, and
- $\Delta \subseteq\left(\mathrm{K} \times \Sigma \cup\{\varepsilon\} \times \Gamma^{*}\right) \times\left(\mathrm{K} \times \Gamma^{*}\right)$,
- $A \subseteq K$ is the set of accepting, states.

Configurations

- A configuration of a pda M is an elt (q, w, γ) of $\mathrm{K} \times \Sigma^{*} \times \Gamma^{*}$ representing the current state q , the input w left to be read, and the stack contents γ
- Stack written from top down: c b a where c on top.
- Initial configuration is ($(,, \mathrm{w}, \varepsilon)$
- Define (q, cw, $\left.\gamma \gamma_{\text {rest }}\right)\left.\right|_{-M}\left(q^{\prime}, w, \gamma^{\prime} \gamma_{\text {rest }}\right)$ iff

$$
\left((q, c, \gamma),\left(q^{\prime}, \gamma^{\prime}\right)\right) \in \Delta
$$

- As usual ${ }_{-} \mathrm{m}^{*}$ is reflexive, transitive closure

Example

- Pda for $\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$

- Pda for $\left\{\mathrm{wc} \mathrm{w}^{\mathrm{R}} \mid \mathrm{w} \varepsilon\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$

Deterministic

- A pda M is deterministic iff:
- Δ_{M} contains no pairs of transitions that compete with each other, and
- Whenever M is in an accepting configuration it has no available moves.
- Obvious pda for $\left\{w w^{R} \mid w \varepsilon\{a, b\}^{*}\right\}$ is not!

$\mathrm{CFL} \Rightarrow \mathrm{PDA}$

- Let G be a context-free grammar. Construct pda M s.t. $L(\mathrm{G})=L(\mathrm{M})$.
- Let $\mathrm{M}=(\{\mathrm{p}, \mathrm{q}\}, \Sigma, \mathrm{V}, \Delta, \mathrm{p},\{\mathrm{q}\})$ where Δ contains:
- ((p, $, \varepsilon, \varepsilon),(q, S))$
- For each $X \rightarrow s_{\mathrm{I}} \mathrm{s}_{2} \ldots \mathrm{~s}_{\mathrm{n}}$. in R, the transition:
($\left.(\mathrm{q}, \varepsilon, \mathrm{X}),\left(\mathrm{q}, \mathrm{s}_{\mathrm{I}} \mathrm{s}_{2} \ldots \mathrm{~s}_{\mathrm{n}}\right)\right)$. (Type I rule)
- For each character $\mathrm{c} \in \Sigma$, the transition: ($\mathrm{q}, \mathrm{c}, \mathrm{c}),(\mathrm{q}, \varepsilon))$. (Type 2 rule)
- Idea: Replace top-most non-terminal on stack by right side of production.

CFLs \approx PDAs

- Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.

Building pda

- Example: $\left\{\mathrm{O}^{\mathrm{n}} \mathrm{I}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$
- Lemma: $(\mathrm{q}, \mathrm{wx}, \mathrm{S}) \vdash^{*}(\mathrm{q}, \mathrm{x}, \gamma)$ iff $\mathrm{S} \Rightarrow^{*} \mathrm{w} \gamma$ in a left-most derivation.
- \Rightarrow : Proof by induction on \# steps in computation.
- Base case trivial
- Induction: Spose true for computations of length n, show for $n+1$
- Two cases: last rule is type I or type 2

Type i: $(q, w x, S) \vdash^{*}(q, x, A \beta) \vdash(q, x, \alpha \beta)$ where $A \rightarrow \alpha$ Type $2:(\mathrm{q}, \mathrm{yax}, \mathrm{S}) \vdash^{*}(\mathrm{q}, \mathrm{ax}, \mathrm{a} \gamma) \vdash(\mathrm{q}, \mathrm{x}, \gamma)$

PDA accepts L(G)

- \Leftarrow Similar
- With lemmas, show $L(G)=L(M)$ by taking $x=\varepsilon$
- $(q, w, S) \vdash^{*}(q, \varepsilon, \varepsilon)$ iff $S \Rightarrow^{*}$ w
- and use opening transition ($(\mathrm{p}, \varepsilon, \varepsilon),(\mathrm{q}, \mathrm{S})$)
- Constructed pda is non-deterministic

$\mathrm{PDA} \Rightarrow \mathrm{CFG}$

- Harder
- Requires converting pda into normal form pda
- Non-terminal models parts of computation up to when input string removes item from stack
- Important theoretically, but not in practice, so we'll skip it.

Algorithms for CFLs

