Lecture 10: Context-Free Grammars & Push-Down Automata

CSCI 101 Spring, 2019

Kim Bruce

Definitions

- A context-free grammar is a quadruple, G = (V, Σ, R, S) in which
 - V is a finite set of variables, containing terminals and nonterminals.
 - $\Sigma \subseteq V$ is the set of terminals
 - R is a finite set of productions of the form U→α, where U is a single nonterminal and α is a (possibly empty) string of terminals and nonterminals.
 I.e., OK to write U → ε
 - S is an element of V called the start symbol.

Closure

- CFL's closed under
 - Concatenation
 - Kleene *
 - Reversal
 - Union
 - Substitution
- What about complement, intersection, difference, ...?

Derivations & Parse Trees

- A sequence of the form
 - $w_{\circ} \Rightarrow w_{r} \Rightarrow ... \Rightarrow w_{n}$ is called a derivation.
 - It is left-most if at each step, the left-most non-terminal is replaced using a rule of the grammar.
 - Similarly for right-most.
 - Does the distinction matter?
 - Not for meaning, but often important for parsers

Parse Trees

- A parse tree for grammar G = (V, Σ , R, S) is a rooted ordered tree in which
 - Every leaf node is labeled with an element of $\Sigma \cup \{\epsilon\}$
 - The root node is labeled S
 - Every other node is labeled with an element of V Σ
 - If m is a non-leaf node labeled X and the children of m are labeled $x_i, ..., x_n$ then R contains the rule $X \rightarrow x_i ... x_n$

Example

Parse Trees & Derivations

- Given parse tree generally corresponds to several derivations of same string
 - E.g., left-most & right-most derivations
- Grammar G is ambiguous if there is at least one string in L(G) that has more than one parse tree. G is unambiguous otherwise.
 - I saw a man in the park with a telescope

- ... affects meaning
- Possible grammars for arithmetic expressions
 - Exp → Exp Op Exp | (Exp) | num Op → + | - | * | /

versus

 Exp → Exp Addop Term | Term Term → Term Mulop Factor | Factor Factor → (Exp) | num Addop → + | -Mulop → * | /

Pushdown Automata

Pushdown Automata

- A pushdown automaton is a sextuple, (K, Σ, Γ, Δ, s, A), where
 - K is a finite set of states,
 - Σ is a finite input alphabet,
 - Γ is a finite stack alphabet,
 - $s \in K$ is the start state, and
 - $\Delta \subseteq (K \times \Sigma \cup \{\varepsilon\} \times \Gamma^*) \times (K \times \Gamma^*),$

Non-deterministic!

• $A \subseteq K$ is the set of accepting, states.

Configurations

- A configuration of a pda M is an elt (q, w, γ) of K × Σ* × Γ* representing the current state q, the input w left to be read, and the stack contents γ
 - Stack written from top down: c b a where c on top.
 - Initial configuration is (s,w,ɛ)
- Define (q, cw, $\gamma \gamma_{rest}$) \vdash_M (q', w, $\gamma' \gamma_{rest}$) iff ((q, c, γ), (q', γ')) $\in \Delta$
- As usual \vdash_M^* is reflexive, transitive closure

Accepting

- A computation C of M is an accepting computation iff:
 - $C = (s, w, \varepsilon) \vdash_{M^*} (q, \varepsilon, \varepsilon)$, and
 - $q \in A$. Need empty stack and accepting state!
- M accepts a string w iff at least one of its computations accepts.
 - $L(M) = {w \in \Sigma^* | M \text{ accepts } w}$
- Note, in any configuration, can have 0, 1, 2, ... possible moves.

Deterministic

- A pda M is deterministic iff:
 - Δ_M contains no pairs of transitions that compete with each other, and
 - Whenever M is in an accepting configuration it has no available moves.
- Obvious pda for {w w^R | w ε {a,b}* } is not!

CFLs \approx PDAs

• Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.

$CFL \Rightarrow PDA$

- Let G be a context-free grammar. Construct pda M s.t. *L*(G) = *L*(M).
- Let M = ({p,q}, Σ , V, Δ , p, {q}) where Δ contains:
 - ((p,ε,ε), (q,S))
 - For each $X \rightarrow s_1 s_2 \dots s_n$. in R, the transition: ((q, ε , X), (q, $s_1 s_2 \dots s_n$)). (Type 1 rule)
 - For each character $c \in \Sigma$, the transition: ((q, c, c), (q, ε)). (*Type 2 rule*)
- Idea: Replace top-most non-terminal on stack by right side of production.

Building pda

- Example: $\{O^{n}I^{n} \mid n \ge 0\}$
- Lemma: $(q,wx,S) \vdash^* (q,x,\gamma)$ iff $S \Rightarrow^* w \gamma$ in a left-most derivation.
 - \Rightarrow : Proof by induction on # steps in computation.
 - Base case trivial
 - Induction: Spose true for computations of length n, show for $n{\mathbf{+1}}$
 - Two cases: last rule is type 1 or type 2 Type 1: $(q,wx,S) \vdash^* (q,x,A\beta) \vdash (q,x,\alpha\beta)$ where $A \rightarrow \alpha$ Type 2: $(q,yax,S) \vdash^* (q,ax,a\gamma) \vdash (q,x,\gamma)$

PDA accepts L(G)

- \leftarrow Similar
- With lemmas, show L(G) = L(M) by taking $x = \varepsilon$
 - $(q,w,S) \vdash^* (q,\varepsilon,\varepsilon) \text{ iff } S \Rightarrow^* w$
 - and use opening transition ((p,ɛ,ɛ),(q,S))
- Constructed pda is non-deterministic

$PDA \Rightarrow CFG$

- Harder
 - Requires converting pda into normal form pda
 - Non-terminal models parts of computation up to when input string removes item from stack
 - Important theoretically, but not in practice, so we'll skip it.

Algorithms for CFLs

Normal Forms

- Because of ε-productions, can be hard to determine if w in L.
 - Parsers recognize terms of language and build abstract syntax tree (*thinned down parse tree*)
- Normal forms can make it easier.
- Chomsky and Greibach Normal Forms
 - Do only Chomsky