
Lecture 10: Context-Free
Grammars & Push-Down

Automata
CSCI 101

Spring, 2019

Kim Bruce

Definitions
• A context-free grammar is a quadruple,  

G = (V, Σ, R, S) in which

• V is a finite set of variables, containing terminals and
nonterminals.

• Σ ⊆ V is the set of terminals

• R is a finite set of productions of the form U→α, where
U is a single nonterminal and α is a (possibly empty)
string of terminals and nonterminals. 
I.e., OK to write U → ε

• S is an element of V called the start symbol.

Closure

• CFL’s closed under

• Concatenation

• Kleene *

• Reversal

• Union

• Substitution

•What about complement, intersection,
difference, ...?

Derivations & Parse Trees

• A sequence of the form

• w0 ⇒ w1 ⇒ ... ⇒ wn is called a derivation.

• It is left-most if at each step, the left-most non-terminal
is replaced using a rule of the grammar.

• Similarly for right-most.

• Does the distinction matter?

• Not for meaning, but often important for parsers

Parse Trees

• A parse tree for grammar G = (V, Σ, R, S) is a
rooted ordered tree in which

• Every leaf node is labeled with an element of Σ ∪ {ε}

• The root node is labeled S

• Every other node is labeled with an element of V - Σ

• If m is a non-leaf node labeled X and the children of m
are labeled x1, ..., xn then R contains the rule X → x1 ...xn

Example

Parse Trees & Derivations

• Given parse tree generally corresponds to
several derivations of same string

• E.g., left-most & right-most derivations

• Grammar G is ambiguous if there is at least
one string in L(G) that has more than one
parse tree. G is unambiguous otherwise.

• I saw a man in the park with a telescope

• ... affects meaning

• Possible grammars for arithmetic expressions

• Exp → Exp Op Exp | (Exp) | num 
Op → + | - | * | / 
 
versus

• Exp → Exp Addop Term | Term 
Term → Term Mulop Factor | Factor 
Factor → (Exp) | num 
Addop → + | - 
Mulop → * | /

Pushdown Automata

Pushdown Automata

• A pushdown automaton is a sextuple,  
(K, Σ, Γ, Δ, s, A), where

• K is a finite set of states,

• Σ is a finite input alphabet,

• Γ is a finite stack alphabet,

• s ∈ K is the start state, and

• Δ ⊆ (Κ × Σ∪{ε} × Γ*) × (K × Γ*),

• A ⊆ K is the set of accepting, states.

Non-deterministic!

Configurations

• A configuration of a pda M is an elt (q, w, γ) of  
Κ × Σ* × Γ* representing the current state q, the
input w left to be read, and the stack contents γ

• Stack written from top down: c b a where c on top.

• Initial configuration is (s,w,ε)

• Define (q, cw, γ γrest) |-M (q’, w, γ’ γrest) iff  
 ((q, c, γ), (q’, γ’)) ∈ Δ

• As usual |-M* is reflexive, transitive closure

Accepting
• A computation C of M is an accepting

computation iff:

• C = (s, w, ε) |-M* (q, ε, ε), and

• q ∈ A.

• M accepts a string w iff at least one of its
computations accepts.

• L(M) = {w ∈ Σ* | M accepts w}

• Note, in any configuration, can have 0, 1, 2, ...
possible moves.

Need empty stack and accepting state!

Example

• Pda for {anbn | n ≥ 0}

• Pda for {w c wR | w ε {a,b}* }

Deterministic

• A pda M is deterministic iff:

• ΔM contains no pairs of transitions that compete with
each other, and

• Whenever M is in an accepting configuration it has no
available moves.

• Obvious pda for {w wR | w ε {a,b}* } is not!

CFLs ≈ PDAs

• Theorem: The class of languages accepted by
PDAs is exactly the class of context-free
languages.

CFL ⇒ PDA
• Let G be a context-free grammar. Construct

pda M s.t. L(G) = L(M).

• Let M = ({p,q}, Σ, V, Δ, p, {q}) where Δ contains:

• ((p,ε,ε), (q,S))

• For each X → s1s2…sn. in R, the transition:  
((q, ε, X), (q, s1s2…sn)). (Type 1 rule)

• For each character c ∈ Σ, the transition: ((q, c, c), (q, ε)).  
(Type 2 rule)

• Idea: Replace top-most non-terminal on stack
by right side of production.

Building pda

• Example: {0n1n | n ≥ 0}

• Lemma: (q,wx,S) ⊢* (q,x,γ) iff S ⇒* w γ in a
left-most derivation.

• ⇒: Proof by induction on # steps in computation.

• Base case trivial

• Induction: Spose true for computations of length n, show for n+1

• Two cases: last rule is type 1 or type 2 
Type 1: (q,wx,S) ⊢* (q,x,Aβ) ⊢ (q,x,αβ) where A → α 
Type 2: (q,yax,S) ⊢* (q,ax,aγ) ⊢ (q,x,γ)

PDA accepts L(G)

• ⇐ Similar

•With lemmas, show L(G) = L(M) by taking x = ε

• (q,w,S) ⊢* (q,ε, ε) iff S ⇒* w

• and use opening transition ((p,ε,ε),(q,S))

• Constructed pda is non-deterministic

PDA ⇒ CFG

• Harder

• Requires converting pda into normal form pda

• Non-terminal models parts of computation up to when
input string removes item from stack

• Important theoretically, but not in practice, so we’ll skip
it.

Algorithms for CFLs

Normal Forms

• Because of ε-productions, can be hard to
determine if w in L.

• Parsers recognize terms of language and build abstract
syntax tree (thinned down parse tree)

• Normal forms can make it easier.

• Chomsky and Greibach Normal Forms

• Do only Chomsky

