Lecture 10: Context-Free
Grammars & Push-Down

Definitions

* A context-free grammar is a quadruple,
G=({,Z R, S in which

AutOmata * Vis a finite set of variables, containing terminals and
nonterminals.
CSCI 101 e X C Vis the set of terminals

Sp ring, 2019 * R is a finite set of productions of the form U—a, where
U is a single nonterminal and o is a (possibly empty)

Kim Bruce string of terminals and nonterminals.
Ie., OK to write U — ¢

o Sisan element of V called the start symbol.
Closure Derivations & Parse Irees

e CFDs closed under

e Concatenation
e Kleene *

* Reversal

e Union

o Substitution

* What about complement, intersection,
difference, ...?

* A sequence of the form
° Wo = W; => ... = W, is called a derivation.

e It is leftmost if at each step, the left-most non-terminal
is replaced using a rule of the grammar.

e Similarly for right-most.

¢ Does the distinction matter?

e Not for meaning, but often important for parsers

Parse Irees

* A parse tree for grammar G =(V,Z, R, S) is a
rooted ordered tree in which

* Every leaf node is labeled with an element of 3 U {g}
e The root node is labeled S
 Every other node is labeled with an element of V- X

e If mis a non-leaf node labeled X and the children of m
are labeled x,, ..., X, then R contains the rule X — x; ..x,

Example

Parse Trees & Derivations

* Given parse tree generally corresponds to
several derivations of same string

e E.g., lefrmost & right-most derivations

e Grammar G is ambiguous if there is at least
one string in L(G) that has more than one
parse tree. G is unambiguous otherwise.

e I saw a man in the park with a telescope

e ... affects meaning

* Possible grammars for arithmetic expressions

o Exp — Exp Op Exp | (Exp) | num
Op—+I1-1*1/

versus

e Exp — Exp Addop Term | Term
Term — Term Mulop Factor | Factor
Factor — (Exp) | num
Addop — + -

Mulop — *|/

Pushdown Automata

Pushdown Automata

* A pushdown automaton is a sextuple,
K,Z,T,A,s,A), where

e K is a finite set of states,
e X is a finite input alphabet,
e T'is a finite stack alphabet,

s € K is the start state, and

AC (K N EU{E} N F*) N (K N F*), Non-deterministic!

o A C K is the set of accepting, states.

Configurations

e A configuration of a pda M is an elt (q, w;) of
K x 2* x I'* representing the current state q, the
input w left to be read, and the stack contents vy

e Stack written from top down: ¢ b a where ¢ on top.

¢ Initial configuration is (s,w€)

* Define (q, cwW, Y Yres)) I-M (q', Wy Y Yreso) iff
(q, ¢,), (@, Y)VEA

* As usual [-m* is reflexive, transitive closure

Accepting

* A computation C of M is an accepting
computation iff:

e C=(s,w¢) lm(q, & ©), and

* qEA. Need empty stack and accepting state!

* M accepts a string w iff at least one of its
computations accepts.

e L(M) = {w € Z* | M accepts w}

* Note, in any configuration, can have o, 1, 2, ...
possible moves.

Example

e Pda for {arb» | n > o}

a/e/a D b/a/e ‘/'\;‘
N '\ b/a/e //‘,<\

{) ()
©) \P)

e Pda for fw c wR | w ¢ {a,b}* }

a/e/a l‘m a/a/e "F\‘
\ \ s

W S S
N e
b/e/b | b/b/e |)

N -

Deterministic

* A pda M is deterministic iff:

* A contains no pairs of transitions that compete with
each other, and

e Whenever M is in an accepting configuration it has no
available moves.

* Obvious pda for fw wR | w € {a,b}* } is not!

CFLs = PDAs

* Theorem: The class of languages accepted by
PDAs is exactly the class of context-free
languages.

CFL = PDA

e Let G be a context-free grammar. Construct
pda M s.t. L(G) = LOVD).
* Let M =(p,q}, Z, V, A, p, {g}) where A contains:

e ((p,e,9), (@)

e For each X — s;s,...s,. in R, the transition:
(q, &,X), (q, siS2...50)). (Bype 1 rule)

e For each character ¢ € Z, the transition: ((q, ¢, ©), (q, €)).
(Bype 2 rule)

e Idea: Replace top-most non-terminal on stack
by right side of production.

Building pda

* Example: {om1 | n > o}

e Lemma: (q,wx,S) H*(q,x,y) if S=*wyina
left-most derivation.

e = Proof by induction on # steps in computation.
e Base case trivial
e Induction: Spose true for computations of length n, show for n+1

e Two cases: last rule is type 1 or type 2
Type 1: (q;wx,S) H* (q,x,AP) - (q,x,0p) where A —
Type 2: (q,yax,S) —* (g,ax,ay) F (q,x,y)

PDA accepts L(G) PDA = CFG

® < Similar o Harder
e With lemmas, show L(G) = L(M) by taking X=€ * Requires converting pda into normal form pda
o (q,wS) FH*(q,e, 0 if S=*w * Non-terminal models parts of computation up to when

input string removes item from stack
e and use opening transition ((p,&,£),(q,S))
e Important theoretically, but not in practice, so we’ll skip

* Constructed pda is non-deterministic e

Normal Forms

* Because of e-productions, can be hard to
determine if w in L.

Algo rithms for CFLS e Parsers recognize terms of language and build abstract

syntax tree (thinned down parse tree)
e Normal forms can make it easier.

* Chomsky and Greibach Normal Forms
e Do only Chomsky

