
Lecture 1: Introduction to
Languages & Theory of

Computation
CSCI 81

Spring, 2019
Kim Bruce

TA’s:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen,
Alice Tan 

Course web page: http://www.cs.pomona.edu/classes/cs101

New Course

• Wedding of

• CS 81 (Logic & Theory of Computation)

• CS 131 (Principles of Programming Languages

• 2/3 of 81 plus 1/3 of 131

• Dropped logic from 81

• Add language implementation issues from 131 tied to
models of computation

Goals

• Describe and use formal systems to model real
phenomena

• Recognize language classes (e.g., regular, cfl,
decidable, r.e.), their gaps, and why important.

• Determine in which classes a language is
contained.

Goals

• Understand the equivalence of generators and
recognizers of languages (e.g. regular
expressions and finite automata, cfgs and pdas,
r.e. languages and Turing machines).

• Understand the use of formal specifications
(e.g., context-free grammars) to derive
algorithms to parse, type-check, and/or
interpret languages, and be able to implement
some of these in a functional language.

More Goals

• Understand the Church-Turing thesis and
several models of universal computation.

• Understand and be able to show that a variety
of interesting problems involving computation
are undecidable.

Syllabus

• First time this course is offered

• More interesting combination of theory &
practice — see where and how theory used

• You have different backgrounds:

• CS 54/55, Math 55/103

• Let me know how course is going.

• Expect to revise syllabus on the fly

Administrivia

• Prereqs:

• CSC054 or

• {CSC 052 and {CSC 055 or HMC/CMC Math 055 or
Math 103}}.

• Corequisite: CSC 062/070

Reading/Homework

• Skim chapter ahead of lecture

• Work practice problems after lecture

• Thus skim section 5.4 and work problems 2.7, 4.4 before
lecture this Thursday

• Homework due Wednesdays at midnight

Outline

• Finite State Machines & Regular Expressions

• Haskell Programming / Lexical Analysis

• Context-free grammars and parse trees

• push-down automata

• parsing programming languages

• Turing Machines & Undecidability

• Formal semantics and interpreters

Required Texts

• Rich: Automata, Computability, & Complexity

• Advantages: Informal, readable

• Disadvantage: Few proofs (except in index). Provide
algorithms, but not show correct. We usually will!

• Any Haskell text, e.g.

• Learn you a Haskell for Greater Good by Miran Lipovaca or

• Real World Haskell by O’Sullivan, Stewart and Goerzen

• Both available for free on-line

Slides

• Will generally be available before class

• Designed for class presentation, not for
complete notes

• Will need to take notes (perhaps on slides)

• No laptops or other electronics open in class

• If that is problem, come see me.

Homework
• Due Wednesday night

• Turn in electronically

• Use LaTeX

• See LaTeX tutorials on “Links to useful info” page

• Daily homework:

• Not to be turned in: do in groups. Should prepare you
for real homework.

• Weekly homework

• See Academic Honesty statement. Must write up on
own. Document any collaborations.

Questions?

Modeling Computation

• Simple example: Vending machine taking only
nickles, and quarters.

• Only dispenses one item, that costs 30 cents

• When amount deposited is at least 30 cents, dispenses
item and correct change.

• Want to model each possible state of machine as
customer uses it.

General Model

• Results of actions depend on current state

• What happens when hit return key in an application?

Alphabets & Strings

• An alphabet Σ is a finite non-empty set whose
elements are called symbols or characters.

• A string (or word) over Σ is a finite sequence of
elements of Σ.

• The empty string is denoted ε.

• The length of a string is the # of letters in it.

Languages
• Σk is set of strings of length k

• ∑0 = {ε}

• ∑k+1 = {xa | x ∈ ∑k , a ∈ ∑}

• Set of all strings over ∑ is written ∑* = ∪k≥0 ∑k

• A language is a set of strings over Σ. Examples:

• strings over {0,1} with more 1’s than 0’s.

• strings over {0,1} that do not contain three 0’s in a row

• {0n1n0n | n ≥ 0}

• Set of legal Java programs

String Operations
• Concatenation of s, t is written s || t or just st.

• ε is identity: εs = s = s ε

• String replication:

• w0 = ε

• wi+1 = wi w

• Reversal of w, wR, has inductive definition:

• εR = ε

• if a is letter, (ua)R = a(uR)

Language Classes

• Regular

• Context-free

• Decidable

• Semi-Decidable

• Finite State Machine

• Pushdown Automata

• Turing Machines*

• Turing Machines

Languages Machines Accepting

Language Classes

Regular Languages

• Can be characterized in 3 ways:

• Languages accepted by finite state machines

• Languages represented by regular expressions

• Language generated by regular grammars

Deterministic Finite State
Machine

• A FSM (or DFSM) is a quintuple (K, Σ, δ, s, A)

• K is a finite set of states

• Σ is a finite input alphabet

• s ∈ K is the start state

• A ⊆ K is set of accepting (or final) states

• δ: K × Σ → K is transition function

• Simple model of real computer

• finite memory Example

State Machines
• Responses depend on states

• Car radio or remote control for TV

• On FM mode, next takes to next station

• On CD mode, next takes to next track

• See “State Pattern” for OO languages

• Could also design “transducers”

• Take action when entering or leaving state

• Lexical scanners for programming languages

• Recognize identifiers / numbers

Other Real Examples

• Physical examples:

• Combination lock on a safe

• Vending machine

• Traffic light

• Elevator

• More esoteric:

• Network protocol states

Terminology

• Configuration: (q,w) ∈ K×Σ*

• snapshot of current state of a computation

• q is current state, w is input still to be read

• Initial configuration is (s,w) where s is start
state and w is input.

Computations

• Single step of M uses δ to process next character:

• (q1,cw) ⊢M (q2,w) iff δ(q1,c) = q2

• ⊢M* is reflexive, transitive closure

• (q1,u) ⊢M* (q2,w) means get from first to second in 0 or
more steps

Defining Language

• M accepts string w iff  
 there is q ∈ A s.t. (s,w) ⊢M* (q,ε)

• M rejects string w iff  
 there is q ∉ A s.t. (s,w) ⊢M* (q,ε)

• L(M) = { w ∈ Σ* | M accepts w }

• L is regular if it is L(M) for some finite state
machine M

Examples

• L0 = {w ∈ Σ∗ | w contains aab as a substring}

• L1 = {w ∈ Σ∗ | w contains at least two b’s}

