Lecture 1: Introduction to Languages & Theory of Computation

CSCI 81 Spring, 2019 Kim Bruce TA's:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen, Alice Tan

Course web page: <u>http://www.cs.pomona.edu/classes/cs101</u>

New Course

- Wedding of
 - CS 81 (Logic & Theory of Computation)
 - CS 131 (Principles of Programming Languages
- 2/3 of 81 plus 1/3 of 131
 - Dropped logic from 81
 - Add language implementation issues from 131 tied to models of computation

Goals

- Describe and use formal systems to model real phenomena
- Recognize language classes (e.g., regular, cfl, decidable, r.e.), their gaps, and why important.
- Determine in which classes a language is contained.

Goals

- Understand the equivalence of generators and recognizers of languages (e.g. regular expressions and finite automata, cfgs and pdas, r.e. languages and Turing machines).
- Understand the use of formal specifications (e.g., context-free grammars) to derive algorithms to parse, type-check, and/or interpret languages, and be able to implement some of these in a functional language.

More Goals

- Understand the Church-Turing thesis and several models of universal computation.
- Understand and be able to show that a variety of interesting problems involving computation are undecidable.

Syllabus

- First time this course is offered
- More interesting combination of theory & practice see where and how theory used
- You have different backgrounds:
 - CS 54/55, Math 55/103
- Let me know how course is going.
 - Expect to revise syllabus on the fly

Administrivia

- Prereqs:
 - CSC054 or
 - {CSC 052 and {CSC 055 or HMC/CMC Math 055 or Math 103}}.
- Corequisite: CSC 062/070

Reading/Homework

- Skim chapter ahead of lecture
 - Work practice problems after lecture
 - Thus skim section 5.4 and work problems 2.7, 4.4 before lecture this Thursday
- Homework due Wednesdays at midnight

Outline

- Finite State Machines & Regular Expressions
- Haskell Programming / Lexical Analysis
- Context-free grammars and parse trees
 - push-down automata
 - parsing programming languages
- Turing Machines & Undecidability
- Formal semantics and interpreters

Required Texts

- Rich: Automata, Computability, & Complexity
 - Advantages: Informal, readable
 - Disadvantage: Few proofs (except in index). Provide algorithms, but not show correct. We usually will!
- Any Haskell text, e.g.
 - Learn you a Haskell for Greater Good by Miran Lipovaca or
 - Real World Haskell by O'Sullivan, Stewart and Goerzen
 - Both available for free on-line

Slides

- Will generally be available before class
- Designed for class presentation, not for complete notes
- Will need to take notes (perhaps on slides)
- No laptops or other electronics open in class
 - If that is problem, come see me.

Homework

- Due Wednesday night
 - Turn in electronically
 - Use LaTeX
 - See LaTeX tutorials on "Links to useful info" page
- Daily homework:
 - Not to be turned in: do in groups. Should prepare you for real homework.
- Weekly homework
 - See Academic Honesty statement. Must write up on own. Document any collaborations.

Modeling Computation

- Simple example: Vending machine taking only nickles, and quarters.
 - Only dispenses one item, that costs 30 cents
 - When amount deposited is at least 30 cents, dispenses item and correct change.
 - Want to model each possible state of machine as customer uses it.

General Model

- Results of actions depend on current state
 - What happens when hit return key in an application?

Alphabets & Strings

- An alphabet Σ is a finite non-empty set whose elements are called symbols or characters.
- A string (or word) over Σ is a finite sequence of elements of Σ.
 - The empty string is denoted ε.
- The length of a string is the # of letters in it.

Languages

- Σ^k is set of strings of length k
 - $\Sigma^\circ = \{\epsilon\}$
 - $\Sigma^{k+i} = \{xa \mid x \in \Sigma^k, a \in \Sigma\}$
 - Set of all strings over Σ is written Σ^* = $\cup_{k \ge 0} \Sigma^k$
- A language is a set of strings over Σ . *Examples*:
 - strings over {0,1} with more 1's than 0's.
 - strings over $\{0,I\}$ that do not contain three 0's in a row
 - $\{O^n I^n O^n \mid n \ge 0\}$
 - Set of legal Java programs

String Operations

- Concatenation of s, t is written s || t or just st.
 - ε is identity: $\varepsilon s = s = s \varepsilon$
- String replication:
 - w^o = ɛ
 - $\mathbf{W}^{i+1} = \mathbf{W}^i \mathbf{W}$
- Reversal of w, w^R, has inductive definition:
 - $\varepsilon^{R} = \varepsilon$
 - if a is letter, $(ua)^R = a(u^R)$

Regular Languages

- Can be characterized in 3 ways:
 - Languages accepted by finite state machines
 - Languages represented by regular expressions
 - Language generated by regular grammars

Deterministic Finite State Machine

- A FSM (or DFSM) is a quintuple (K, Σ , δ , s, A)
 - K is a finite set of states
 - Σ is a finite input alphabet
 - $s \in K$ is the start state
 - $A \subseteq K$ is set of accepting (or final) states
 - $\delta: K \times \Sigma \rightarrow K$ is transition function
- Simple model of real computer
 - finite memory

Example

State Machines

- Responses depend on states
 - Car radio or remote control for TV
 - On FM mode, next takes to next station
 - On CD mode, next takes to next track
 - See "State Pattern" for OO languages
- Could also design "transducers"
 - Take action when entering or leaving state
- Lexical scanners for programming languages
 - Recognize identifiers / numbers

Other Real Examples

- Physical examples:
 - Combination lock on a safe
 - Vending machine
 - Traffic light
 - Elevator
- More esoteric:
 - Network protocol states

Terminology

- Configuration: $(q,w) \in K \times \Sigma^*$
 - snapshot of current state of a computation
 - q is current state, w is input still to be read
- Initial configuration is (s,w) where s is start state and w is input.

Computations

- Single step of M uses δ to process next character:
 - $(q_1,cw) \vdash_M (q_2,w)$ iff $\delta(q_1,c) = q_2$
- \vdash_{M} * is reflexive, transitive closure
 - (q₁,u) ⊢_M* (q₂,w) means get from first to second in 0 or more steps

Defining Language

- M accepts string w iff there is $q \in A$ s.t. (s,w) $\vdash_M^* (q,\epsilon)$
- M rejects string w iff there is $q \notin A$ s.t. (s,w) $\vdash_M^* (q,\epsilon)$
- $L(\mathbf{M}) = \{ \mathbf{w} \in \Sigma^* \mid \mathbf{M} \text{ accepts } \mathbf{w} \}$
- L is regular if it is *L*(M) for some finite state machine M

Examples

- $L_o = \{w \in \Sigma * \mid w \text{ contains aab as a substring} \}$
- $L_r = \{w \in \Sigma * \mid w \text{ contains at least two b's} \}$