Lecture I : Introduction to
 Languages \& Theory of Computation

CSCI 8i
Spring, 2019
Kim Bruce
TA's:Gerard Bentley, Sarp Misoglu, Seana Huang, Danny Rosen, Alice Tan

Course web page: http://wwere.cs.pomona.edu/classes/csIoI

New Course

- Wedding of
- CS 8I (Logic \& Theory of Computation)
- CS I3I (Principles of Programming Languages
- $2 / 3$ of 8I plus i/3 of I3I
- Dropped logic from 8I
- Add language implementation issues from 131 tied to models of computation

Goals

- Describe and use formal systems to model real phenomena
- Recognize language classes (e.g., regular, cfl, decidable, r.e.), their gaps, and why important.
- Determine in which classes a language is contained.

Goals

- Understand the equivalence of generators and recognizers of languages (e.g. regular expressions and finite automata, cfgs and pdas, r.e. languages and Turing machines).
- Understand the use of formal specifications (e.g., context-free grammars) to derive algorithms to parse, type-check, and/or interpret languages, and be able to implement some of these in a functional language.

More Goals

- Understand the Church-Turing thesis and several models of universal computation.
- Understand and be able to show that a variety of interesting problems involving computation are undecidable.

Syllabus

- First time this course is offered
- More interesting combination of theory \& practice - see where and how theory used
- You have different backgrounds:
- CS 54/55, Math 55/ro3
- Let me know how course is going.
- Expect to revise syllabus on the fly

Reading/Homework

- Skim chapter ahead of lecture
- Work practice problems after lecture
- Thus skim section 5.4 and work problems 2.7, 4.4 before lecture this Thursday
- Homework due Wednesdays at midnight

Outline

- Finite State Machines \& Regular Expressions
- Haskell Programming / Lexical Analysis
- Context-free grammars and parse trees
- push-down automata
- parsing programming languages
- Turing Machines \& Undecidability
- Formal semantics and interpreters

Slides

- Will generally be available before class
- Designed for class presentation, not for complete notes
- Will need to take notes (perhaps on slides)
- No laptops or other electronics open in class
- If that is problem, come see me.

Required Texts

- Rich: Automata, Computability, \& Complexity
- Advantages: Informal, readable
- Disadvantage: Few proofs (except in index). Provide algorithms, but not show correct. We usually will!
- Any Haskell text, e.g.
- Learn you a Haskell for Greater Good by Miran Lipovaca or
- Real World Haskell by O'Sullivan, Stewart and Goerzen
- Both available for free on-line

Homework

- Due Wednesday night
- Turn in electronically
- Use LaTeX
- See LaTeX tutorials on "Links to useful info" page
- Daily homework:
- Not to be turned in: do in groups. Should prepare you for real homework.
- Weekly homework
- See Academic Honesty statement. Must write up on own. Document any collaborations.

Questions?

General Model

- Results of actions depend on current state
- What happens when hit return key in an application?

Modeling Computation

- Simple example: Vending machine taking only nickles, and quarters.
- Only dispenses one item, that costs 30 cents
- When amount deposited is at least 30 cents, dispenses item and correct change.
- Want to model each possible state of machine as customer uses it

Alphabets \& Strings

- An alphabet Σ is a finite non-empty set whose elements are called symbols or characters.
- A string (or word) over Σ is a finite sequence of elements of Σ.
- The empty string is denoted ε.
- The length of a string is the \# of letters in it.

Languages

- Σ^{k} is set of strings of length k
- $\Sigma^{\circ}=\{\varepsilon\}$
- $\Sigma^{k+r}=\left\{\mathrm{xa} \mid \mathrm{x} \in \Sigma^{\mathrm{k}}, \mathrm{a} \in \Sigma\right\}$
- Set of all strings over Σ is written $\Sigma^{*}=\bigcup_{k z o} \Sigma^{k}$
- A language is a set of strings over Σ. Examples:
- strings over $\{0,1\}$ with more 's than o's.
- strings over $\{0, \mathrm{r}\}$ that do not contain three o's in a row
- $\left\{0^{n} I^{n} 0^{n} \mid n \geq 0\right\}$
- Set of legal Java programs

Language Classes

Languages

- Regular
- Context-free
- Decidable
- Semi-Decidable
- Turing Machines

String Operations

- Concatenation of s, t is written $\mathrm{s} \| \mathrm{t}$ or just st.
- ε is identity: $\varepsilon s=s=s \varepsilon$
- String replication:
- $\mathrm{w}^{0}=\varepsilon$
- $\mathrm{w}^{\text {i+t }}=\mathrm{w}^{\mathrm{i}} \mathrm{w}$
- Reversal of w, w^{R}, has inductive definition:
- $\varepsilon^{\mathrm{R}}=\varepsilon$
- if a is letter, $(u)^{R}=a\left(u^{R}\right)$

Language Classes

Regular Languages

- Can be characterized in 3 ways:
- Languages accepted by finite state machines
- Languages represented by regular expressions
- Language generated by regular grammars

Deterministic Finite State Machine

- A FSM (or DFSM) is a quintuple (K, $\Sigma, \delta, \mathrm{s}, \mathrm{A})$
- K is a finite set of states
- Σ is a finite input alphabet
- $s \in K$ is the start state
- $\mathrm{A} \subseteq \mathrm{K}$ is set of accepting (or final) states
- $\delta: \mathrm{K} \times \Sigma \rightarrow \mathrm{K}$ is transition function
- Simple model of real computer
- finite memory

State Machines

- Responses depend on states
- Car radio or remote control for TV
- On FM mode, next takes to next station
- On CD mode, next takes to next track
- See "State Pattern" for OO languages
- Could also design "transducers"
- Take action when entering or leaving state
- Lexical scanners for programming languages
- Recognize identifiers / numbers

Other Real Examples

- Physical examples:
- Combination lock on a safe
- Vending machine
- Traffic light
- Elevator
- More esoteric:
- Network protocol states

Terminology

- Configuration: $(\mathrm{q}, \mathrm{w}) \in \mathrm{K} \times \Sigma^{*}$
- snapshot of current state of a computation
- q is current state, w is input still to be read
- Initial configuration is (s, w) where s is start state and w is input.

Computations

- Single step of M uses δ to process next character:
- $\left(\mathrm{q}_{1}, \mathrm{cw}\right) \vdash_{\mathrm{M}}\left(\mathrm{q}_{2}, \mathrm{w}\right)$ iff $\delta\left(\mathrm{q}_{\mathrm{q}}, \mathrm{c}\right)=\mathrm{q}_{2}$
$-\vdash M^{*}$ is reflexive, transitive closure
- $\left(q_{1}, \mathrm{u}\right) \vdash^{*}\left(\mathrm{q}_{2}, \mathrm{w}\right)$ means get from first to second in o or more steps

Defining Language

- M accepts string w iff
there is $\mathrm{q} \in$ A s.t. $(\mathrm{s}, \mathrm{w}) \vdash \mathrm{m}^{*}(\mathrm{q}, \varepsilon)$
- M rejects string wiff
there is $\mathrm{q} \notin$ A s.t. $(\mathrm{s}, \mathrm{w}) \vdash \mathrm{m}^{*}(\mathrm{q}, \varepsilon)$
- $L(M)=\left\{w \in \Sigma^{*} \mid M\right.$ accepts $\left.w\right\}$
- L is regular if it is $L(\mathrm{M})$ for some finite state machine M

Examples

- $L_{o}=\{w \in \Sigma * \mid w$ contains aab as a substring $\}$
- $L_{I}=\{w \in \Sigma * \mid w$ contains at least two b's $\}$

