
CSCI 101 Spring 2019

Homework 10
Due Wednesday, 4/18/2019

Purpose:
The purpose of this homework assignment is to help you better understand how to create interpreters

in Haskell.
Please to turn in a file Hmwk10.pdf with all the answers to the homework, but also pull out your

Haskell programs and turn them in a text file named Hmwk10.hs. The first line of that file should be

module Hmwk10 where

The next line should be a comment with your name. The rest of the file should be your Haskell code.
We will take that file and automatically test it by running your code on our test data. As a result,
you should be sure that your code compiles properly (i.e., running ”ghci Hmwk10.hs” should compile
your code without errors and it should be possible to run your code on my test cases (ideally without
it blowing up when executed!).

The Hmwk10.hs file will be used for automated testing of your code. Aside from looking for your
name in the contents, it is likely that no human will read it. Thus if you don’t include that code in the
Hmwk10.pdf file, you will likely not get any credit for it. Please remember this!

While your Hmwk10.pdf file will be turned in to gradeScope as usual, you will need to turn in the
file Hmwk10.hs via https://submit.cs.pomona.edu/2019sp/cs101.

Be sure to test your programs one last time before submitting. I’ve seen students mess up when
commenting code in a way that causes everything to break. Code that doesnt compile will get very
little credit. We will be using some automatic testing, and code that doesnt compile brings everything
to a halt. With a large class we will not have time to go in to manually tweak your code to make it
work.

IMPORTANT: When you write the functions requested below, please make sure that they have
the exact names and types specified in the question. If you make an error, your program will crash on
our test suite and you will get very little credit.

Be sure that all of my sample code works, and worry about edge cases that might cause your program
to give the wrong answer as I will test it more thoroughly.

1. (0 points) Academic Honesty

2. (12 points) Primitive recursive functions

We can define predecessor as a primitive recursive function by writing

pred (0) = 0

pred (y+1) = y

The predecessor of successors is exactly what as expected, though the predecessor of 0 is 0 (because
we are not using negative numbers).

(a) Please write the primitive recursive definition of the function isZero(x) where isZero(x) = 1
if x is 0, and = 0 otherwise.

1



CSCI 101 Spring 2019

(b) Please write the primitive recursive definition of the function monus(m,n) where monus (m,n)
= m - n if m ≥ n and 0 otherwise.

(c) Please write the primitive recursive definition of the function lessOrEq where lessOrEq (m,n)
= 1 if m ≤ n and 0 otherwise.

(d) Please write the primitive recursive definition of the function greaterThan where greaterThan
(m,n) = 1 if m > n, and 0 otherwise.

3. (20 points) Interpreters

The parser for PCF accepts let expressions of the form let vble = term in body end, but
transforms them into syntax trees for function applications. That is, the above let expression is
translated into the syntax tree for

((fn vble => body),term)

In this problem I would like you to start with a modified parser for PCF that takes let expressions
like that above and parses it into an abstract syntax tree of the form AST LET(vble,term,body).

In this problem you will extend the environment interpreter for PCF to interpret this term cor-
rectly.

(a) Begin by writing the computation rule using environments for let expressions. This should
be similar to the rules expressed in slides 6 – 8 of Lecture 22.

(b) Extend the environment interpreter in PCFEnvinterpreter.hs (available on the web page
with “Programs from Lecture”) to correctly interpret terms of the form AST LET(vble,term,body).
A parser that generates these AST LET terms is available on that same web page. Test your
program with let expressions like let x = 2 in succ x end.

2


