
CSCI 101 Spring 2019

Homework 04
Due 2/20/2019

Purpose:
The purpose of this homework assignment is to help you become a better Haskell programmer and

to implement applications of regular languages in Haskell..
Like last week I want you to turn in a file Hmwk4.pdf with all the answers to the homework, but

also to pull out your Haskell programs and turn them in a text file named Hmwk4.hs. The first line of
that file should be

module Hmwk4 where

The next line should be a comment with your name. The rest of the file should be your Haskell code.
We will take that file and automatically test it by running your code on our test data. As a result,
you should be sure that your code compiles properly (i.e., running ”ghci Hmwk4.hs” should compile
your code without errors and it should be possible to run your code on my test cases (ideally without
it blowing up when executed!).

The Hmwk4.hs file will be used for automated testing of your code. Likely, no human will read
it. Thus if you don’t include that code in the Hmwk4.pdf file, you will likely not get any credit for it.
Please remember this!

While your Hmwk4.pdf file will be turned in to gradeScope as usual, you will need to turn in the
file Hmwk4.hs via https://submit.cs.pomona.edu/2019sp/cs101.

Be sure to test your programs one last time before submitting. I’ve seen students mess up when
commenting code in a way that causes everything to break. Code that doesnt compile will get very
little credit. We will be using some automatic testing, and code that doesnt compile brings everything
to a halt. With a large class we will not have time to go in to manually tweak your code to make it
work.

IMPORTANT: When you write the functions requested below, please make sure that they have
the exact names and types specified in the question. If you make an error, your program will crash on
our test suite and you will get very little credit.

Be sure that all of my sample code works, and worry about edge cases that might cause your program
to give the wrong answer as I will test it more thoroughly.

space2 ex
Tasks:
*Problems from the texts are given in the form c.n(k) where c is the chapter and n is the problem
number, and k is the sub-problem number. Thus problem 2.7(d) is problem 7(d) from Chapter 2.

1. (0 points) Academic Honesty Statement

2. (15 points) Basic Functions

(a) Zipping and Unzipping

The function zip to compute the pairwise interleaving of two lists of arbitrary length is
predefined, but I’d like you to write it from scratch anyway (calling it zip’). You should use
pattern matching to define this function. The function should have type:

zip’:: [t] -> [t1] -> [(t, t1)]

-> *Main> zip’ [1,3,5,7] ["a","b","c","de"]

[(1,"a"),(3,"b"),(5,"c"),(7,"de")]

it :: [(Integer, [Char])]

1

CSCI 101 Spring 2019

Note: If the lists don’t have the same length, you may decide how you would like the function
to behave. If you don’t specify any behavior at all you will get a warning from the compiler
that you have not taken care of all possible patterns— this is fine.

Write the inverse function, unzip’, which behaves as follows:

unzip’ :: [(s, t)] -> ([s], [t])

*Main> unzip’ [(1,"a"),(3,"b"),(5,"c"),(7,"de")]

([1,3,5,7],["a","b","c","de"])

it :: ([Integer], [[Char]])

Again, unzip is built-in, but you will write your own unzip’.

Write zip3’, to zip three lists.

zip3’ :: [t] -> [t1] -> [t2] -> [(t, t1, t2)]

*Main> zip3’ [1,3,5,7] ["a","b","c","de"] [1,2,3,4]

[(1,"a",1),(3,"b",2),(5,"c",3),(7,"de",4)]

it :: [(Integer, [Char], Integer)]

Once again, zip3 is built-in, but you will write your own zip3’.

Why can’t you write a function zip any that takes a list of any number of lists and zips
them into tuples? From the first part of this question it should be pretty clear that for
any fixed n, one can write a function zipn. The difficulty here is to write a single func-
tion that works for all n! I.e., can we write a single function zip any such that zip any

[list1,list2,...,listk] returns a list of k-tuples no matter what k is?

(b) find

Write a function find that takes a pair of an element and a list and returns the location of
the first occurrence of the element in the list (or -1 if it doesn’t occur).

find :: (Eq a, Eq a1, Num a1) => (a, [a]) -> a1

The prefix (Eq a, Eq a1, Num a1) => indicates that the type a of elements of the list must
support equality (after all you must check the first argument to see if it is equal to any of the
elements of the list). The return type must be some kind of a numeric type as it indicates
where in the list the element is found.

For example:

*Main> find(3, [1, 2, 3, 4, 5])

2

*Main> find("cow", ["cow", "dog"])

0

*Main> find("rabbit", ["cow", "dog"])

-1

First write a definition for find where the element is guaranteed to be in the list. Then,
modify your definition so that it returns -1 if the element is not in the list.

3. (10 points) Trees

Here is the datatype definition for a binary tree storing integers only at the leaves (it was also
discussed in class):

2

CSCI 101 Spring 2019

data IntTree = Leaf Integer | Interior (IntTree,IntTree) deriving Show

Write a function treeSum:IntTree → Integer that adds up the values in the leaves of a tree:

*Main> treeSum(Leaf 3)

3

*Main> treeSum(Interior (Leaf 2, Leaf 3))

5

*Main> treeSum(Interior(Leaf 2, Interior(Leaf 1, Leaf 1)))

4

Write a function height : IntTree → Integer that returns the height of a tree:

*Main> height(Leaf 3);

0

*Main> height(Interior(Leaf 2, Leaf 3));

1

*Main> height(Interior(Leaf 2, Interior(Leaf 1, Leaf 1)));

2

(Again the system gives me a more general type for my function: (Num a, Ord a) => IntTree

-> a.)

Write a function balanced: IntTree → Bool that returns true if a tree is balanced (i.e., both
subtrees are balanced and differ in height by at most one). You may use your height function
above.

*Main> balanced(Leaf 3);

True

*Main> balanced(Interior(Leaf 2, Leaf 3));

True

*Main> balanced(Interior(Leaf 2, Interior(Leaf 3, Interior(Leaf 1, Leaf 1))));

False

Is your implementation as efficient as possible? What is wrong with using the height function in
the definition of balanced? How would you write balanced to be more efficient? (You need not
write code, but describe how you would do this.)

4. (10 points) Stack Operations

Certain programming languages (and calculators) evaluate expressions using a stack. As some
of you may know, PostScript is a programming language of this ilk for describing images when
sending them to a printer. We are going to implement a simple evaluator for such a language.
Computation is expressed as a sequence of operations, which are drawn from the following data
type:

data OpCode = Push Float | Add | Mult | Sub | Div | Swap deriving Show

The operations have the following effect on the operand stack. (The top of the stack is shown on
the left.)

3

CSCI 101 Spring 2019

OpCode Initial Stack Resulting Stack

Push(r) ... r ...
Add a b ... (b + a) ...
Mult a b ... (b * a) ...
Sub a b ... (b - a) ...
Div a b ... (b / a) ...
Swap a b ... b a ...

The stack may be represented using a list for this example, although we could also define a stack
data type for it.

type Stack = [Float]

Write a recursive evaluation function with the signature

eval :: ([OpCode], Stack) -> Float

It takes a list of operations and a stack. The function should perform each operation in order and
return what is left in the top of the stack when no operations are left. For example,

eval([Push 2.0, Push 1.0, Sub],[])

returns 1.0. The eval function will have the following basic form:

eval ([], a:rest) = --

eval ((Push n):ops, rest) = --

--

eval (_, _) = 0.0;

You need to fill in the blanks and add cases for the other opcodes.

The last rule handles illegal cases by matching any operation list and stack not handled by the
cases you write. These illegal cases include ending with an empty stack, performing addition
when fewer than two elements are on the stack, and so on. You may ignore divide-by-zero errors
for now (or look at exception handling in one of the tutorials – we will cover that topic in a few
weeks).

5. (10 points) Haskell Reduce for Trees In an earlier problem we defined a datatype IntTree for
trees whose leaves hold Integers. In this questions we define trees that can hold leaves of any fixed
type:

data Tree a = ALeaf a | Node (Tree a) (Tree a)

4

CSCI 101 Spring 2019

✁
✁

❆
❆

❆
❆

✁
✁

❆
❆

✁
✁

❆
❆

✁
✁

✁
✁

❆
❆

•

• •

• •

a b

c d

e f

✁
✁

❆
❆

❆
❆

✁
✁

❆
❆

✁
✁

❆
❆

✁
✁

✁
✁

❆
❆

oper

oper oper

oper oper

a b

c d

e f

• Write a function
reduce :: (a → a → a) → Tree a → a

that combines all the values of the leaves using the binary operation passed as a parameter.
In more detail, if oper : a → a → a and t is the nonempty tree on the left in this picture,
then reduce oper t should be the result obtained by evaluating the tree on the right. For
example, if f is the function

f :: Int → Int → Int

f x y = x + y

then reduce f (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3)) = (1 + 2) + 3 = 6. Explain your
definition of reduce in one or two sentences.

• Write a function toList :: Tree a → [a] that returns a list of the elements in the argument
tree.

• Write a function reduceList :: (a → a → a) → [a] → a that reduces a list according to
the supplied function argument.

• Use toList and reduceList to write a predicate prop reduceTest, suitable for testing with
QuickCheck.

A possible layout for the entire code is given below :

{-# OPTIONS -XTypeSynonymInstances #-}

import Test.QuickCheck

data Tree a = Leaf a | Node (Tree a) (Tree a)

reduce :: (a->a->a) -> Tree a -> a
reduce f t = < ... >

toList :: Tree a -> [a]
toList t = < ... >

reduceList :: (a->a->a) -> [a] -> a
reduceList f l = < ... >

prop_reduceTest :: (Int->Int->Int) -> TS -> Bool
prop_reduceTest f tree = < ... >

type TS = Tree Int
instance Arbitrary TS where

arbitrary = do
n <- choose (1,2) :: Gen Int
case n of

5

(a) Write a function

reduceTree :: (a -> a -> a) -> Tree a -> a

that combines all the values of the leaves using the binary operation passed as a parameter.
In more detail, if oper : a -> a -> a and t is the nonempty tree on the left in this picture,
then reduce oper t should be the result obtained by evaluating the tree on the right. For
example, if f is the function

f :: Int -> Int -> Int

f x y = x + y

then reduceTree f (Node (Node (ALeaf 1) (ALeaf 2)) (ALeaf 3)) = (1 + 2) + 3 =

6. Explain your definition of reduce in one or two sentences. (Notice that this is slight
generalization of a function you wrote earlier for integer trees.)

(b) Write a function treeToList :: Tree a -> [a] that returns a list of the elements in the
argument tree in the same order left-to-right order they occur in the tree. Thus for the
sample tree, the result would be [a,b,c,d,e,f].

(c) Write a function reduceList :: (a -> a -> a) -> [a] -> a that reduces a non-empty
list according to the supplied function argument. Notice that the results of reduceList (-)
[8,3,1] should be (8 - 3) - 1 == 4, not 8 - (3 - 1) = 6. You may assume that the list parameter
has at least length 1 and that, when applied to a singleton list [x], simply returns x.

(d) For what kind of arithmetic operations, f, would you expect reduceList f (treeToList

tree) == reducetree f tree?

6. (15 points) Higher-Order Functions

One of the advantages of functional languages is the ability to write high-level functions which
capture general patterns. For instance, in class we defined the “listify” function which could
be used to make a binary operation apply to an entire list.

(a) Your assignment is to write a high-level function to support list abstractions. The languages
Miranda, Haskell, and Python allow the user to write list abstractions of the form:

[f(x) | x <- startlist; cond(x)]

where startlist is a list of type a, f: a -> b (for some type b), and cond: a -> bool.
This expression results in a list containing all elements of the form f(x), where x is an element
in the list “startlist”, and expression “cond(x)” is true. For example, if sqr(x) = x*x and
odd(x) is true iff x is an odd integer, then

5

CSCI 101 Spring 2019

[sqr(x) | x <- [1,2,5,4,3], odd(x)]

returns the list [1,25,9] (that is, the squares of the odd elements of the list - 1,5,3). Note
that the list returned preserves the order of startlist.

This function could have been defined from first principles in Haskell, using built-in Haskell
functions like map, and filter. Do not use the list comprehension syntax of Haskell, as that
makes the problem totally trivial! You are to write a function

listcomp :: (a -> b) -> [a] -> (a -> Bool) -> [b]

so that

listcomp f startlist cond = [f(x) | x <- startlist; cond(x)].

(Hint: One way to do this is to divide the function up into two pieces, the first of which
calculates the list, [x | x <- startlist; cond(x)], and then think how the “map” func-
tion can be used to compute the final answer. It’s also pretty straightforward to do it all at
once.)

(b) Test your function by writing a function getEmps which extracts the list of all names of
managerial employees over the age of 60 from a list of employee records, each of which has
the following fields: “name” which is a string, “age” which is an integer, and ”status” which
has a value of managerial, clerical, or manual. You will need to look up how records are used
in Haskell, as I didn’t talk about them in class. (Be sure to define this function correctly.
I’m always amazed at the number of people who miss this problem by carelessness!)

(c) Generalize your function in part a to

listcomp2 g slist1 slist2 cond =

[g x y | x <- list1; y <- list2; cond x y]

Here g is to be applied to all combinations of elements from list1 and list2 that satisfy
the condition given by cond.

7. (10 points) Implementing DFSM In the bottom half of file SimpleExampleFSM.hs (after the
definition of decide) there are definitions of a data type FSM and a function gAccept that simulate
an arbitrary DFSM. In this model, the states of the machine are numbers. The constructor for
an FSM requires the programmer to specify the starting state, the set of transitions, and a set of
accepting states. The transitions are represented by triple of the form (s, i, t), which is interpreted
as if the machine is in state s with i as the next input, then it should transition to state t. See
the definition of sampleFSM at the bottom of the file. You can run the simulator on machine
sampleFSM and input ”abaabbb” by writing

gAccept sampleFSM "abbabbb"

Please write an encoding of a deterministic finite automata that accepts all strings that contain
an even number of a’s or an odd number of b’s. [Originally I asked you to write an encoding
of a different DFSM, but I accidentally put up the solution. Hence the new problem! I left the
solution to the original in the file SimpleExampleFSM.hs.] I suggest you design the DFSM graph

6

CSCI 101 Spring 2019

first and then encode it. Please name your DFSM eaobFSM. My testing code will invoke gAccept

eaobFSM w for a variety of strings w to make sure it accepts the desired language.

[You may find the function Set.fromList to be helpful – look it up in the Haskell libraries on-line.]

Do not copy over all of my code in SimpleExampleFSM.hs. Instead have your program file start
with

import SimpleExampleFSM

If you then copy the SimpleExampleFSM.hs file into the same directory as your program, your
code should be able to access my types and functions.

Criteria:
Your assignment will be graded based on the correctness and the completeness of your solutions.

Please make sure that you use the correct terminologies when you write proofs or describe a structure,
such as CFG, PDA, etc.

Submission Guideline:
Please edit your HW following the editing guideline, especially the instructions on the number of

pages each question should occupy. The text in blue are instructions; they should be either removed,
or replaced with proper contents and turned into black. Please submit your homework solutions online
via gradescope.

7

